These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 29916021)

  • 1. Deregulation of RNA Metabolism in Microsatellite Expansion Diseases.
    Misra C; Lin F; Kalsotra A
    Adv Neurobiol; 2018; 20():213-238. PubMed ID: 29916021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MBNL Sequestration by Toxic RNAs and RNA Misprocessing in the Myotonic Dystrophy Brain.
    Goodwin M; Mohan A; Batra R; Lee KY; Charizanis K; Fernández Gómez FJ; Eddarkaoui S; Sergeant N; Buée L; Kimura T; Clark HB; Dalton J; Takamura K; Weyn-Vanhentenryck SM; Zhang C; Reid T; Ranum LP; Day JW; Swanson MS
    Cell Rep; 2015 Aug; 12(7):1159-68. PubMed ID: 26257173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myotonic dystrophy, when simple repeats reveal complex pathogenic entities: new findings and future challenges.
    Sicot G; Gourdon G; Gomes-Pereira M
    Hum Mol Genet; 2011 Oct; 20(R2):R116-23. PubMed ID: 21821673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-mediated neuromuscular disorders.
    Ranum LP; Cooper TA
    Annu Rev Neurosci; 2006; 29():259-77. PubMed ID: 16776586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Ligand That Targets CUG Trinucleotide Repeats.
    Li J; Matsumoto J; Bai LP; Murata A; Dohno C; Nakatani K
    Chemistry; 2016 Oct; 22(42):14881-14889. PubMed ID: 27573860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA biology of disease-associated microsatellite repeat expansions.
    Rohilla KJ; Gagnon KT
    Acta Neuropathol Commun; 2017 Aug; 5(1):63. PubMed ID: 28851463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-binding proteins in microsatellite expansion disorders: mediators of RNA toxicity.
    Echeverria GV; Cooper TA
    Brain Res; 2012 Jun; 1462():100-11. PubMed ID: 22405728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gain of RNA function in pathological cases: Focus on myotonic dystrophy.
    Klein AF; Gasnier E; Furling D
    Biochimie; 2011 Nov; 93(11):2006-12. PubMed ID: 21763392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systemic delivery of a Peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy.
    Leger AJ; Mosquea LM; Clayton NP; Wu IH; Weeden T; Nelson CA; Phillips L; Roberts E; Piepenhagen PA; Cheng SH; Wentworth BM
    Nucleic Acid Ther; 2013 Apr; 23(2):109-17. PubMed ID: 23308382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophy.
    Ho TH; Savkur RS; Poulos MG; Mancini MA; Swanson MS; Cooper TA
    J Cell Sci; 2005 Jul; 118(Pt 13):2923-33. PubMed ID: 15961406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental insights into the pathology of and therapeutic strategies for DM1: Back to the basics.
    Chau A; Kalsotra A
    Dev Dyn; 2015 Mar; 244(3):377-90. PubMed ID: 25504326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining early steps in mRNA transport: mutant mRNA in myotonic dystrophy type I is blocked at entry into SC-35 domains.
    Smith KP; Byron M; Johnson C; Xing Y; Lawrence JB
    J Cell Biol; 2007 Sep; 178(6):951-64. PubMed ID: 17846170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flow cytometry-based screen identifies MBNL1 modulators that rescue splicing defects in myotonic dystrophy type I.
    Zhang F; Bodycombe NE; Haskell KM; Sun YL; Wang ET; Morris CA; Jones LH; Wood LD; Pletcher MT
    Hum Mol Genet; 2017 Aug; 26(16):3056-3068. PubMed ID: 28535287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actinomycin D Specifically Reduces Expanded CUG Repeat RNA in Myotonic Dystrophy Models.
    Siboni RB; Nakamori M; Wagner SD; Struck AJ; Coonrod LA; Harriott SA; Cass DM; Tanner MK; Berglund JA
    Cell Rep; 2015 Dec; 13(11):2386-2394. PubMed ID: 26686629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of triplet repeat expansion on chromatin structure and expression of DMPK and neighboring genes, SIX5 and DMWD, in myotonic dystrophy.
    Frisch R; Singleton KR; Moses PA; Gonzalez IL; Carango P; Marks HG; Funanage VL
    Mol Genet Metab; 2001; 74(1-2):281-91. PubMed ID: 11592825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9.
    Batra R; Nelles DA; Pirie E; Blue SM; Marina RJ; Wang H; Chaim IA; Thomas JD; Zhang N; Nguyen V; Aigner S; Markmiller S; Xia G; Corbett KD; Swanson MS; Yeo GW
    Cell; 2017 Aug; 170(5):899-912.e10. PubMed ID: 28803727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA pathogenesis of the myotonic dystrophies.
    Day JW; Ranum LP
    Neuromuscul Disord; 2005 Jan; 15(1):5-16. PubMed ID: 15639115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy.
    Lin X; Miller JW; Mankodi A; Kanadia RN; Yuan Y; Moxley RT; Swanson MS; Thornton CA
    Hum Mol Genet; 2006 Jul; 15(13):2087-97. PubMed ID: 16717059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A muscleblind knockout model for myotonic dystrophy.
    Kanadia RN; Johnstone KA; Mankodi A; Lungu C; Thornton CA; Esson D; Timmers AM; Hauswirth WW; Swanson MS
    Science; 2003 Dec; 302(5652):1978-80. PubMed ID: 14671308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Congenital myotonic dystrophy-an RNA-mediated disease across a developmental continuum.
    Jagannathan S; Bradley RK
    Genes Dev; 2017 Jun; 31(11):1067-1068. PubMed ID: 28717044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.