BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 29916061)

  • 1. Eye tracker accuracy: quantitative evaluation of the invisible eye center location.
    Wyder S; Cattin PC
    Int J Comput Assist Radiol Surg; 2018 Oct; 13(10):1651-1660. PubMed ID: 29916061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. With Gaze Tracking Toward Noninvasive Eye Cancer Treatment.
    Wyder S; Hennings F; Pezold S; Hrbacek J; Cattin PC
    IEEE Trans Biomed Eng; 2016 Sep; 63(9):1914-1924. PubMed ID: 26660515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What to expect from your remote eye-tracker when participants are unrestrained.
    Niehorster DC; Cornelissen THW; Holmqvist K; Hooge ITC; Hessels RS
    Behav Res Methods; 2018 Feb; 50(1):213-227. PubMed ID: 28205131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method for measuring gaze orientation in space in unrestrained head conditions.
    Cesqui B; de Langenberg Rv; Lacquaniti F; d'Avella A
    J Vis; 2013 Jul; 13(8):. PubMed ID: 23902754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing gaze position signals and synthesizing noise during fixations in eye-tracking data.
    Niehorster DC; Zemblys R; Beelders T; Holmqvist K
    Behav Res Methods; 2020 Dec; 52(6):2515-2534. PubMed ID: 32472501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy.
    Via R; Fassi A; Fattori G; Fontana G; Pella A; Tagaste B; Riboldi M; Ciocca M; Orecchia R; Baroni G
    Med Phys; 2015 May; 42(5):2194-202. PubMed ID: 25979013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance Evaluation Strategies for Eye Gaze Estimation Systems with Quantitative Metrics and Visualizations.
    Kar A; Corcoran P
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30231547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of slippage on the data quality of head-worn eye trackers.
    Niehorster DC; Santini T; Hessels RS; Hooge ITC; Kasneci E; Nyström M
    Behav Res Methods; 2020 Jun; 52(3):1140-1160. PubMed ID: 31898290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel haploscopic viewing apparatus with a three-axis eye tracker.
    Ramey NA; Ying HS; Irsch K; Müllenbroich MC; Vaswani R; Guyton DL
    J AAPOS; 2008 Oct; 12(5):498-503. PubMed ID: 18440260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iris center corneal reflection method for gaze tracking using visible light.
    Sigut J; Sidha SA
    IEEE Trans Biomed Eng; 2011 Feb; 58(2):411-9. PubMed ID: 20952326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of handheld marker to calibrate a field-programmable gate array based eye tracker for artificial vision system.
    Caspi A; Roy A; Barry MP; Sadeghi R; Kartha A; Dagnelie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3323-3326. PubMed ID: 33018715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining head pose and eye location information for gaze estimation.
    Valenti R; Sebe N; Gevers T
    IEEE Trans Image Process; 2012 Feb; 21(2):802-15. PubMed ID: 21788191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Head movement compensation and multi-modal event detection in eye-tracking data for unconstrained head movements.
    Larsson L; Schwaller A; Nyström M; Stridh M
    J Neurosci Methods; 2016 Dec; 274():13-26. PubMed ID: 27693470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study.
    Ma L; Zhao Z; Chen F; Zhang B; Fu L; Liao H
    Int J Comput Assist Radiol Surg; 2017 Dec; 12(12):2205-2215. PubMed ID: 28779275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nonvisual eye tracker calibration method for video-based tracking.
    Harrar V; Le Trung W; Malienko A; Khan AZ
    J Vis; 2018 Sep; 18(9):13. PubMed ID: 30208432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A MATLAB-based eye tracking control system using non-invasive helmet head restraint in the macaque.
    De Luna P; Mohamed Mustafar MF; Rainer G
    J Neurosci Methods; 2014 Sep; 235():41-50. PubMed ID: 24979728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards free 3D end-point control for robotic-assisted human reaching using binocular eye tracking.
    Maimon-Dror RO; Fernandez-Quesada J; Zito GA; Konnaris C; Dziemian S; Faisal AA
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1049-1054. PubMed ID: 28813960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fusion of P300 and eye-tracker data for spelling using BCI2000.
    Kalika D; Collins L; Caves K; Throckmorton C
    J Neural Eng; 2017 Oct; 14(5):056010. PubMed ID: 28585523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers.
    Luo X
    Med Phys; 2014 Jun; 41(6):061913. PubMed ID: 24877824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Open-source Software and Gaze Data Repositories for Performance Evaluation of Eye Tracking Systems.
    Kar A; Corcoran P
    Vision (Basel); 2019 Oct; 3(4):. PubMed ID: 31735856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.