These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 29916249)
1. Lanosterol Disrupts Aggregation of Human γD-Crystallin by Binding to the Hydrophobic Dimerization Interface. Kang H; Yang Z; Zhou R J Am Chem Soc; 2018 Jul; 140(27):8479-8486. PubMed ID: 29916249 [TBL] [Abstract][Full Text] [Related]
2. In vitro unfolding, refolding, and polymerization of human gammaD crystallin, a protein involved in cataract formation. Kosinski-Collins MS; King J Protein Sci; 2003 Mar; 12(3):480-90. PubMed ID: 12592018 [TBL] [Abstract][Full Text] [Related]
3. Molecular Insights into the Inhibitory Role of α-Crystallin against γD-Crystallin Aggregation. Ghosh D; Agarwal M; Radhakrishna M J Chem Theory Comput; 2024 Feb; 20(4):1740-1752. PubMed ID: 38078935 [TBL] [Abstract][Full Text] [Related]
4. Lanosterol reduces the aggregation propensity of ultraviolet-damaged human γD-crystallins: a molecular dynamics study. Zhou H; Li Y; Yang Y; Liu S; Yang Z Phys Chem Chem Phys; 2021 Jun; 23(24):13696-13704. PubMed ID: 34128026 [TBL] [Abstract][Full Text] [Related]
5. Interdomain side-chain interactions in human gammaD crystallin influencing folding and stability. Flaugh SL; Kosinski-Collins MS; King J Protein Sci; 2005 Aug; 14(8):2030-43. PubMed ID: 16046626 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of unfolding and aggregation of lens protein human gamma D crystallin by sodium citrate. Goulet DR; Knee KM; King JA Exp Eye Res; 2011 Oct; 93(4):371-81. PubMed ID: 21600897 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of the highly efficient quenching of tryptophan fluorescence in human gammaD-crystallin. Chen J; Flaugh SL; Callis PR; King J Biochemistry; 2006 Sep; 45(38):11552-63. PubMed ID: 16981715 [TBL] [Abstract][Full Text] [Related]
8. Lanosterol reverses protein aggregation in cataracts. Zhao L; Chen XJ; Zhu J; Xi YB; Yang X; Hu LD; Ouyang H; Patel SH; Jin X; Lin D; Wu F; Flagg K; Cai H; Li G; Cao G; Lin Y; Chen D; Wen C; Chung C; Wang Y; Qiu A; Yeh E; Wang W; Hu X; Grob S; Abagyan R; Su Z; Tjondro HC; Zhao XJ; Luo H; Hou R; Jefferson J; Perry P; Gao W; Kozak I; Granet D; Li Y; Sun X; Wang J; Zhang L; Liu Y; Yan YB; Zhang K Nature; 2015 Jul; 523(7562):607-11. PubMed ID: 26200341 [TBL] [Abstract][Full Text] [Related]
9. Tryptophan cluster protects human γD-crystallin from ultraviolet radiation-induced photoaggregation in vitro. Schafheimer N; King J Photochem Photobiol; 2013; 89(5):1106-15. PubMed ID: 23683003 [TBL] [Abstract][Full Text] [Related]
10. Protection of human γD-crystallin protein from ultraviolet C-induced aggregation by ortho-vanillin. Hsueh SS; Lu JH; Wu JW; Lin TH; Wang SS Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120023. PubMed ID: 34098480 [TBL] [Abstract][Full Text] [Related]
11. Probing folding and fluorescence quenching in human gammaD crystallin Greek key domains using triple tryptophan mutant proteins. Kosinski-Collins MS; Flaugh SL; King J Protein Sci; 2004 Aug; 13(8):2223-35. PubMed ID: 15273315 [TBL] [Abstract][Full Text] [Related]
12. Group II archaeal chaperonin recognition of partially folded human γD-crystallin mutants. Sergeeva OA; Yang J; King JA; Knee KM Protein Sci; 2014 Jun; 23(6):693-702. PubMed ID: 24615724 [TBL] [Abstract][Full Text] [Related]
13. Effect of Pressure on the Conformational Landscape of Human γD-Crystallin from Replica Exchange Molecular Dynamics Simulations. Kacirani A; Uralcan B; Domingues TS; Haji-Akbari A J Phys Chem B; 2024 May; 128(20):4931-4942. PubMed ID: 38685567 [TBL] [Abstract][Full Text] [Related]
14. Double Domain Swapping in Human γC and γD Crystallin Drives Early Stages of Aggregation. Mondal B; Nagesh J; Reddy G J Phys Chem B; 2021 Feb; 125(7):1705-1715. PubMed ID: 33566611 [TBL] [Abstract][Full Text] [Related]
15. Tyrosine/cysteine cluster sensitizing human γD-crystallin to ultraviolet radiation-induced photoaggregation in vitro. Schafheimer N; Wang Z; Schey K; King J Biochemistry; 2014 Feb; 53(6):979-90. PubMed ID: 24410332 [TBL] [Abstract][Full Text] [Related]
16. Comparative analysis of human γD-crystallin aggregation under physiological and low pH conditions. Wu JW; Chen ME; Wen WS; Chen WA; Li CT; Chang CK; Lo CH; Liu HS; Wang SS PLoS One; 2014; 9(11):e112309. PubMed ID: 25389780 [TBL] [Abstract][Full Text] [Related]
17. A molecular dynamics approach to explore the structural characterization of cataract causing mutation R58H on human γD crystallin. Karunakaran R; Srikumar PS Mol Cell Biochem; 2018 Dec; 449(1-2):55-62. PubMed ID: 29532225 [TBL] [Abstract][Full Text] [Related]
18. Effect of mutations on the folding and stability of Ghosh D; Sojitra KA; Biswas A; Agarwal M; Radhakrishna M J Biomol Struct Dyn; 2024; 42(22):12062-12076. PubMed ID: 37830785 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, Evaluation, and Structure-Activity Relationship Study of Lanosterol Derivatives To Reverse Mutant-Crystallin-Induced Protein Aggregation. Yang X; Chen XJ; Yang Z; Xi YB; Wang L; Wu Y; Yan YB; Rao Y J Med Chem; 2018 Oct; 61(19):8693-8706. PubMed ID: 30153006 [TBL] [Abstract][Full Text] [Related]
20. Cataract-causing mutation S228P promotes βB1-crystallin aggregation and degradation by separating two interacting loops in C-terminal domain. Qi LB; Hu LD; Liu H; Li HY; Leng XY; Yan YB Protein Cell; 2016 Jul; 7(7):501-15. PubMed ID: 27318838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]