These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29916254)

  • 1. Impacts of Lipase Enzyme on the Surface Properties of Marine Aerosols.
    Schiffer JM; Luo M; Dommer AC; Thoron G; Pendergraft M; Santander MV; Lucero D; Pecora de Barros E; Prather KA; Grassian VH; Amaro RE
    J Phys Chem Lett; 2018 Jul; 9(14):3839-3849. PubMed ID: 29916254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant Charge Modulates Structure and Stability of Lipase-Embedded Monolayers at Marine-Relevant Aerosol Surfaces.
    Luo M; Dommer AC; Schiffer JM; Rez DJ; Mitchell AR; Amaro RE; Grassian VH
    Langmuir; 2019 Jul; 35(27):9050-9060. PubMed ID: 31188612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanism of activation of Burkholderia cepacia lipase at aqueous-organic interfaces.
    de Oliveira IP; Jara GE; Martínez L
    Phys Chem Chem Phys; 2017 Nov; 19(46):31499-31507. PubMed ID: 29160871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling interfacial properties of organic-coated marine aerosol with lipase incorporation.
    Xu M; Tsona NT; Cheng S; Li J; Du L
    Sci Total Environ; 2021 Aug; 782():146893. PubMed ID: 33848860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic resolution of 1,2-diols using immobilized Burkholderia cepacia lipase: A combined experimental and molecular dynamics investigation.
    Mathpati AC; Vyas VK; Bhanage BM
    J Biotechnol; 2017 Nov; 262():1-10. PubMed ID: 28958793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations.
    Barbe S; Lafaquière V; Guieysse D; Monsan P; Remaud-Siméon M; André I
    Proteins; 2009 Nov; 77(3):509-23. PubMed ID: 19475702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent dielectric effect and side chain mutation on the structural stability of Burkholderia cepacia lipase active site: a quantum mechanical/molecular mechanics study.
    Tahan A; Monajjemi M
    Acta Biotheor; 2011 Dec; 59(3-4):291-312. PubMed ID: 21710316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Burkholderia cepacia lipase: A versatile catalyst in synthesis reactions.
    Sánchez DA; Tonetto GM; Ferreira ML
    Biotechnol Bioeng; 2018 Jan; 115(1):6-24. PubMed ID: 28941272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media.
    Pan S; Liu X; Xie Y; Yi Y; Li C; Yan Y; Liu Y
    Bioresour Technol; 2010 Dec; 101(24):9822-4. PubMed ID: 20713309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing activity and stability of Burkholderia cepacia lipase by immobilization on surface-functionalized mesoporous silicates.
    Kato K; Seelan S
    J Biosci Bioeng; 2010 Jun; 109(6):615-7. PubMed ID: 20471602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protic ionic liquid as additive on lipase immobilization using silica sol-gel.
    de Souza RL; de Faria EL; Figueiredo RT; Freitas Ldos S; Iglesias M; Mattedi S; Zanin GM; dos Santos OA; Coutinho JA; Lima ÁS; Soares CM
    Enzyme Microb Technol; 2013 Mar; 52(3):141-50. PubMed ID: 23410924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipase activation by molecular bioimprinting: The role of interactions between fatty acids and enzyme active site.
    Brandão LMS; Barbosa MS; Souza RL; Pereira MM; Lima ÁS; Soares CMF
    Biotechnol Prog; 2021 Jan; 37(1):e3064. PubMed ID: 32776684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity enhancement and stabilization of lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica.
    Chen GC; Kuan IC; Hong JR; Tsai BH; Lee SL; Yu CY
    Biotechnol Lett; 2011 Mar; 33(3):525-9. PubMed ID: 21046198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.
    Kim C; Lee J; Cho J; Oh Y; Choi YK; Choi E; Park J; Kim MJ
    J Org Chem; 2013 Mar; 78(6):2571-8. PubMed ID: 23406287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational studies of essential dynamics of Pseudomonas cepacia lipase.
    Lee J; Suh SW; Shin S
    J Biomol Struct Dyn; 2000 Oct; 18(2):297-309. PubMed ID: 11089650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous esterification by lipase from Burkholderia cepacia in the fluorinated solvent.
    Shipovskov S
    Biotechnol Prog; 2008; 24(6):1262-6. PubMed ID: 19194939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and properties of the alkaline lipase from Burkholderia cepacia A.T.C.C. 25609.
    Dalal S; Singh PK; Raghava S; Rawat S; Gupta MN
    Biotechnol Appl Biochem; 2008 Sep; 51(Pt 1):23-31. PubMed ID: 18052929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.
    Sasso F; Natalello A; Castoldi S; Lotti M; Santambrogio C; Grandori R
    Biotechnol J; 2016 Jul; 11(7):954-60. PubMed ID: 27067648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity of lipase from Burkholderia cepacia in the synthesis of 3'-arylaliphatic acid esters of floxuridine.
    Li N; Zeng QM; Zong MH
    J Biotechnol; 2009 Jul; 142(3-4):267-70. PubMed ID: 19539679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of the chiral selectivity of Pseudomonas cepacia lipase.
    Lang DA; Mannesse ML; de Haas GH; Verheij HM; Dijkstra BW
    Eur J Biochem; 1998 Jun; 254(2):333-40. PubMed ID: 9660188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.