These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 29916271)

  • 21. Understanding Deformation Behavior and Compression Speed Effect in Gabapentin Compacts.
    Roopwani R; Buckner IS
    J Pharm Sci; 2021 May; 110(5):2157-2166. PubMed ID: 33359044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative evaluation of tableting compression behaviors by methods of internal and external lubricant addition: inhibition of enzymatic activity of trypsin preparation by using external lubricant addition during the tableting compression process.
    Otsuka M; Sato M; Matsuda Y
    AAPS PharmSci; 2001; 3(3):E20. PubMed ID: 11741271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction.
    Tye CK; Sun CC; Amidon GE
    J Pharm Sci; 2005 Mar; 94(3):465-72. PubMed ID: 15696587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium phosphates in pharmaceutical tableting. 2. Comparison of tableting properties.
    Schmidt PC; Herzog R
    Pharm World Sci; 1993 Jun; 15(3):116-22. PubMed ID: 8348107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies on the reduction of tensile strength of tablets after roll compaction/dry granulation.
    Herting MG; Kleinebudde P
    Eur J Pharm Biopharm; 2008 Sep; 70(1):372-9. PubMed ID: 18511247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved properties of fine active pharmaceutical ingredient powder blends and tablets at high drug loading via dry particle coating.
    Kunnath K; Huang Z; Chen L; Zheng K; Davé R
    Int J Pharm; 2018 May; 543(1-2):288-299. PubMed ID: 29625168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of temperature increase during the tableting of pharmaceutical materials.
    Cespi M; Bonacucina G; Casettari L; Ronchi S; Palmieri GF
    Int J Pharm; 2013 May; 448(1):320-6. PubMed ID: 23518365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of dry granulation on compactibility and capping tendency of macrolide antibiotic formulation.
    Bozic DZ; Dreu R; Vrecer F
    Int J Pharm; 2008 Jun; 357(1-2):44-54. PubMed ID: 18308490
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insight Into a Novel Strategy for the Design of Tablet Formulations Intended for Direct Compression.
    Capece M; Huang Z; Davé R
    J Pharm Sci; 2017 Jun; 106(6):1608-1617. PubMed ID: 28283431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential of carnuba wax in ameliorating brittle fracture during tableting.
    Uhumwangho MU; Okor RS; Adogah JT
    Pak J Pharm Sci; 2009 Jan; 22(1):58-61. PubMed ID: 19168422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulation of roller compaction with subsequent tableting and characterization of lactose and microcrystalline cellulose.
    Hein S; Picker-Freyer KM; Langridge J
    Pharm Dev Technol; 2008; 13(6):523-32. PubMed ID: 18728996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compression physics in the formulation development of tablets.
    Patel S; Kaushal AM; Bansal AK
    Crit Rev Ther Drug Carrier Syst; 2006; 23(1):1-65. PubMed ID: 16749898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unified compaction curve model for tensile strength of tablets made by roller compaction and direct compression.
    Farber L; Hapgood KP; Michaels JN; Fu XY; Meyer R; Johnson MA; Li F
    Int J Pharm; 2008 Jan; 346(1-2):17-24. PubMed ID: 17689211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roll compaction/dry granulation: Suitability of different binders.
    Mangal H; Kirsolak M; Kleinebudde P
    Int J Pharm; 2016 Apr; 503(1-2):213-9. PubMed ID: 26976499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Co-Processed Excipients for Dispersible Tablets-Part 1: Manufacturability.
    Bowles BJ; Dziemidowicz K; Lopez FL; Orlu M; Tuleu C; Edwards AJ; Ernest TB
    AAPS PharmSciTech; 2018 Aug; 19(6):2598-2609. PubMed ID: 29916193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding size enlargement and hardening of granules on tabletability of unlubricated granules prepared by dry granulation.
    Patel S; Dahiya S; Sun CC; Bansal AK
    J Pharm Sci; 2011 Feb; 100(2):758-66. PubMed ID: 20803605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The evaluation of fine-particle hydroxypropylcellulose as a roller compaction binder in pharmaceutical applications.
    Skinner GW; Harcum WW; Barnum PE; Guo JH
    Drug Dev Ind Pharm; 1999 Oct; 25(10):1121-8. PubMed ID: 10529893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Excipient-process interactions and their impact on tablet compaction and film coating.
    Pandey P; Bindra DS; Gour S; Trinh J; Buckley D; Badawy S
    J Pharm Sci; 2014 Nov; 103(11):3666-3674. PubMed ID: 25223603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of some compression aids in tableting of roller compacted swellable core drug layer.
    Golchert D; Bines E; Carmody A
    Int J Pharm; 2013 Sep; 453(2):322-8. PubMed ID: 23796839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of granulating method on physical and mechanical properties, compression behavior, and compactibility of lactose and microcrystalline cellulose granules.
    Horisawa E; Danjo K; Sunada H
    Drug Dev Ind Pharm; 2000 Jun; 26(6):583-93. PubMed ID: 10826106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.