These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 29916367)

  • 1. Current CRISPR gene drive systems are likely to be highly invasive in wild populations.
    Noble C; Adlam B; Church GM; Esvelt KM; Nowak MA
    Elife; 2018 Jun; 7():. PubMed ID: 29916367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Daisy-chain gene drives for the alteration of local populations.
    Noble C; Min J; Olejarz J; Buchthal J; Chavez A; Smidler AL; DeBenedictis EA; Church GM; Nowak MA; Esvelt KM
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8275-8282. PubMed ID: 30940750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary dynamics of CRISPR gene drives.
    Noble C; Olejarz J; Esvelt KM; Church GM; Nowak MA
    Sci Adv; 2017 Apr; 3(4):e1601964. PubMed ID: 28435878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance analysis of novel toxin-antidote CRISPR gene drive systems.
    Champer J; Kim IK; Champer SE; Clark AG; Messer PW
    BMC Biol; 2020 Mar; 18(1):27. PubMed ID: 32164660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A confinable home-and-rescue gene drive for population modification.
    Kandul NP; Liu J; Bennett JB; Marshall JM; Akbari OS
    Elife; 2021 Mar; 10():. PubMed ID: 33666174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing gene drives to limit spillover to non-target populations.
    Greenbaum G; Feldman MW; Rosenberg NA; Kim J
    PLoS Genet; 2021 Feb; 17(2):e1009278. PubMed ID: 33630838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility.
    North AR; Burt A; Godfray HCJ
    BMC Biol; 2020 Aug; 18(1):98. PubMed ID: 32782000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evading resistance to gene drives.
    Gomulkiewicz R; Thies ML; Bull JJ
    Genetics; 2021 Feb; 217(2):. PubMed ID: 33724420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A toxin-antidote CRISPR gene drive system for regional population modification.
    Champer J; Lee E; Yang E; Liu C; Clark AG; Messer PW
    Nat Commun; 2020 Feb; 11(1):1082. PubMed ID: 32109227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR Gene Drive Efficiency and Resistance Rate Is Highly Heritable with No Common Genetic Loci of Large Effect.
    Champer J; Wen Z; Luthra A; Reeves R; Chung J; Liu C; Lee YL; Liu J; Yang E; Messer PW; Clark AG
    Genetics; 2019 May; 212(1):333-341. PubMed ID: 30918006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression.
    Taxiarchi C; Beaghton A; Don NI; Kyrou K; Gribble M; Shittu D; Collins SP; Beisel CL; Galizi R; Crisanti A
    Nat Commun; 2021 Jun; 12(1):3977. PubMed ID: 34172748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene drives gaining speed.
    Bier E
    Nat Rev Genet; 2022 Jan; 23(1):5-22. PubMed ID: 34363067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical modeling of self-contained CRISPR gene drive reversal systems.
    Heffel MG; Finnigan GC
    Sci Rep; 2019 Dec; 9(1):20050. PubMed ID: 31882576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can CRISPR-Based Gene Drive Be Confined in the Wild? A Question for Molecular and Population Biology.
    Marshall JM; Akbari OS
    ACS Chem Biol; 2018 Feb; 13(2):424-430. PubMed ID: 29370514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daisy-chain gene drives: The role of low cut-rate, resistance mutations, and maternal deposition.
    Verkuijl SAN; Anderson MAE; Alphey L; Bonsall MB
    PLoS Genet; 2022 Sep; 18(9):e1010370. PubMed ID: 36121880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulations Reveal High Efficiency and Confinement of a Population Suppression CRISPR Toxin-Antidote Gene Drive.
    Zhu Y; Champer J
    ACS Synth Biol; 2023 Mar; 12(3):809-819. PubMed ID: 36825354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations.
    Champer J; Reeves R; Oh SY; Liu C; Liu J; Clark AG; Messer PW
    PLoS Genet; 2017 Jul; 13(7):e1006796. PubMed ID: 28727785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistance to a CRISPR-based gene drive at an evolutionarily conserved site is revealed by mimicking genotype fixation.
    Fuchs S; Garrood WT; Beber A; Hammond A; Galizi R; Gribble M; Morselli G; Hui TJ; Willis K; Kranjc N; Burt A; Crisanti A; Nolan T
    PLoS Genet; 2021 Oct; 17(10):e1009740. PubMed ID: 34610011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment.
    López Del Amo V; Bishop AL; Sánchez C HM; Bennett JB; Feng X; Marshall JM; Bier E; Gantz VM
    Nat Commun; 2020 Jan; 11(1):352. PubMed ID: 31953404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-tap gene drive uses iterative genome targeting to help overcome resistance alleles.
    Bishop AL; López Del Amo V; Okamoto EM; Bodai Z; Komor AC; Gantz VM
    Nat Commun; 2022 May; 13(1):2595. PubMed ID: 35534475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.