These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 29916690)
1. Fuel-Free Light-Powered TiO Kong L; Mayorga-Martinez CC; Guan J; Pumera M ACS Appl Mater Interfaces; 2018 Jul; 10(26):22427-22434. PubMed ID: 29916690 [TBL] [Abstract][Full Text] [Related]
2. ZnO/ZnO Pourrahimi AM; Villa K; Ying Y; Sofer Z; Pumera M ACS Appl Mater Interfaces; 2018 Dec; 10(49):42688-42697. PubMed ID: 30500156 [TBL] [Abstract][Full Text] [Related]
3. Photo-Fenton Degradation of Nitroaromatic Explosives by Light-Powered Hematite Microrobots: When Higher Speed Is Not What We Go For. Peng X; Urso M; Pumera M Small Methods; 2021 Oct; 5(10):e2100617. PubMed ID: 34927942 [TBL] [Abstract][Full Text] [Related]
5. One body, two hands: photocatalytic function- and Fenton effect-integrated light-driven micromotors for pollutant degradation. Wang J; Dong R; Yang Q; Wu H; Bi Z; Liang Q; Wang Q; Wang C; Mei Y; Cai Y Nanoscale; 2019 Sep; 11(35):16592-16598. PubMed ID: 31460538 [TBL] [Abstract][Full Text] [Related]
6. Chemical/Light-Powered Hybrid Micromotors with "On-the-Fly" Optical Brakes. Chen C; Tang S; Teymourian H; Karshalev E; Zhang F; Li J; Mou F; Liang Y; Guan J; Wang J Angew Chem Int Ed Engl; 2018 Jul; 57(27):8110-8114. PubMed ID: 29737003 [TBL] [Abstract][Full Text] [Related]
7. Recyclable nanographene-based micromachines for the on-the-fly capture of nitroaromatic explosives. Khezri B; Beladi Mousavi SM; Sofer Z; Pumera M Nanoscale; 2019 May; 11(18):8825-8834. PubMed ID: 31012898 [TBL] [Abstract][Full Text] [Related]
8. Light-controlled propulsion, aggregation and separation of water-fuelled TiO2/Pt Janus submicromotors and their "on-the-fly" photocatalytic activities. Mou F; Kong L; Chen C; Chen Z; Xu L; Guan J Nanoscale; 2016 Mar; 8(9):4976-83. PubMed ID: 26579705 [TBL] [Abstract][Full Text] [Related]
9. Self-propelled activated carbon Janus micromotors for efficient water purification. Jurado-Sánchez B; Sattayasamitsathit S; Gao W; Santos L; Fedorak Y; Singh VV; Orozco J; Galarnyk M; Wang J Small; 2015 Jan; 11(4):499-506. PubMed ID: 25207503 [TBL] [Abstract][Full Text] [Related]
10. Dye-Enhanced Self-Electrophoretic Propulsion of Light-Driven TiO Wu Y; Dong R; Zhang Q; Ren B Nanomicro Lett; 2017; 9(3):30. PubMed ID: 30393725 [TBL] [Abstract][Full Text] [Related]
11. Smart Microdevices Laying "Breadcrumbs" to Find the Way Home: Chemotactic Homing TiO Kong L; Mayorga-Martinez CC; Guan J; Pumera M Chem Asian J; 2019 Jul; 14(14):2456-2459. PubMed ID: 30845370 [TBL] [Abstract][Full Text] [Related]
12. Light-Driven Au-WO Zhang Q; Dong R; Wu Y; Gao W; He Z; Ren B ACS Appl Mater Interfaces; 2017 Feb; 9(5):4674-4683. PubMed ID: 28097861 [TBL] [Abstract][Full Text] [Related]
18. Band Engineering versus Catalysis: Enhancing the Self-Propulsion of Light-Powered MXene-Derived Metal-TiO Urso M; Bruno L; Dattilo S; Carroccio SC; Mirabella S ACS Appl Mater Interfaces; 2024 Jan; 16(1):1293-1307. PubMed ID: 38134036 [TBL] [Abstract][Full Text] [Related]
19. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. Li J; Singh VV; Sattayasamitsathit S; Orozco J; Kaufmann K; Dong R; Gao W; Jurado-Sanchez B; Fedorak Y; Wang J ACS Nano; 2014 Nov; 8(11):11118-25. PubMed ID: 25289459 [TBL] [Abstract][Full Text] [Related]
20. Photochemically Powered AgCl Janus Micromotors as a Model System to Understand Ionic Self-Diffusiophoresis. Zhou C; Zhang HP; Tang J; Wang W Langmuir; 2018 Mar; 34(10):3289-3295. PubMed ID: 29436833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]