These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29916820)

  • 1. Density-functional tight-binding approach for metal clusters, nanoparticles, surfaces and bulk: application to silver and gold.
    Cuny J; Tarrat N; Spiegelman F; Huguenot A; Rapacioli M
    J Phys Condens Matter; 2018 Aug; 30(30):303001. PubMed ID: 29916820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking Density Functional Based Tight-Binding for Silver and Gold Materials: From Small Clusters to Bulk.
    Oliveira LFL; Tarrat N; Cuny J; Morillo J; Lemoine D; Spiegelman F; Rapacioli M
    J Phys Chem A; 2016 Oct; 120(42):8469-8483. PubMed ID: 27735183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCC-DFTB parameters for simulating hybrid gold-thiolates compounds.
    Fihey A; Hettich C; Touzeau J; Maurel F; Perrier A; Köhler C; Aradi B; Frauenheim T
    J Comput Chem; 2015 Oct; 36(27):2075-87. PubMed ID: 26280464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density-functional tight-binding: basic concepts and applications to molecules and clusters.
    Spiegelman F; Tarrat N; Cuny J; Dontot L; Posenitskiy E; Martí C; Simon A; Rapacioli M
    Adv Phys X; 2020; 5(1):1710252. PubMed ID: 33154977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding.
    Fox H; Newman KE; Schneider WF; Corcelli SA
    J Chem Theory Comput; 2010 Feb; 6(2):499-507. PubMed ID: 26617305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient way to model complex magnetite: Assessment of SCC-DFTB against DFT.
    Liu H; Seifert G; Di Valentin C
    J Chem Phys; 2019 Mar; 150(9):094703. PubMed ID: 30849917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters.
    Vuong VQ; Madridejos JML; Aradi B; Sumpter BG; Metha GF; Irle S
    Chem Sci; 2020 Nov; 11(48):13113-13128. PubMed ID: 34094493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemistry and Structure of Silver Molecular Nanoparticles.
    Bhattarai B; Zaker Y; Atnagulov A; Yoon B; Landman U; Bigioni TP
    Acc Chem Res; 2018 Dec; 51(12):3104-3113. PubMed ID: 30462479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Spectroscopy of Large Systems in Solution: The DFTB/PCM and TD-DFTB/PCM Approach.
    Barone V; Carnimeo I; Scalmani G
    J Chem Theory Comput; 2013 Apr; 9(4):2052-71. PubMed ID: 26583552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Caveat on SCC-DFTB and Noncovalent Interactions Involving Sulfur Atoms.
    Petraglia R; Corminboeuf C
    J Chem Theory Comput; 2013 Jul; 9(7):3020-5. PubMed ID: 26583983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of density-functional tight-binding models in describing hydrogen-bonded anionic-water clusters.
    Jahangiri S; Cai L; Peslherbe GH
    J Comput Chem; 2014 Sep; 35(23):1707-15. PubMed ID: 25043123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations.
    Hourahine B; Aradi B; Blum V; Bonafé F; Buccheri A; Camacho C; Cevallos C; Deshaye MY; Dumitrică T; Dominguez A; Ehlert S; Elstner M; van der Heide T; Hermann J; Irle S; Kranz JJ; Köhler C; Kowalczyk T; Kubař T; Lee IS; Lutsker V; Maurer RJ; Min SK; Mitchell I; Negre C; Niehaus TA; Niklasson AMN; Page AJ; Pecchia A; Penazzi G; Persson MP; Řezáč J; Sánchez CG; Sternberg M; Stöhr M; Stuckenberg F; Tkatchenko A; Yu VW; Frauenheim T
    J Chem Phys; 2020 Mar; 152(12):124101. PubMed ID: 32241125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling realistic TiO
    Selli D; Fazio G; Di Valentin C
    J Chem Phys; 2017 Oct; 147(16):164701. PubMed ID: 29096504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutral gold clusters studied by the isothermal Brownian-type molecular dynamics and metadynamics molecular dynamics simulations.
    Lai SK; Lim CC
    J Comput Chem; 2021 Feb; 42(5):310-325. PubMed ID: 33336370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward an Accurate Density-Functional Tight-Binding Description of Zinc-Containing Compounds.
    Moreira NH; Dolgonos G; Aradi B; da Rosa AL; Frauenheim T
    J Chem Theory Comput; 2009 Mar; 5(3):605-14. PubMed ID: 26610226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dcdftbmd: Divide-and-Conquer Density Functional Tight-Binding Program for Huge-System Quantum Mechanical Molecular Dynamics Simulations.
    Nishimura Y; Nakai H
    J Comput Chem; 2019 Jun; 40(15):1538-1549. PubMed ID: 30828839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidencing the relationship between isomer spectra and melting: the 20- and 55-atom silver and gold cluster cases.
    Rapacioli M; Spiegelman F; Tarrat N
    Phys Chem Chem Phys; 2019 Dec; 21(45):24857-24866. PubMed ID: 31539012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metadynamics combined with auxiliary density functional and density functional tight-binding methods: alanine dipeptide as a case study.
    Cuny J; Korchagina K; Menakbi C; Mineva T
    J Mol Model; 2017 Mar; 23(3):72. PubMed ID: 28204939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon-induced hot-carrier generation differences in gold and silver nanoclusters.
    Douglas-Gallardo OA; Berdakin M; Frauenheim T; Sánchez CG
    Nanoscale; 2019 Apr; 11(17):8604-8615. PubMed ID: 30994677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.