These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29917076)

  • 1. Arabidopsis phenotyping through geometric morphometrics.
    Manacorda CA; Asurmendi S
    Gigascience; 2018 Jul; 7(7):. PubMed ID: 29917076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LEAFPROCESSOR: a new leaf phenotyping tool using contour bending energy and shape cluster analysis.
    Backhaus A; Kuwabara A; Bauch M; Monk N; Sanguinetti G; Fleming A
    New Phytol; 2010 Jul; 187(1):251-261. PubMed ID: 20456045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ARADEEPOPSIS, an Automated Workflow for Top-View Plant Phenomics using Semantic Segmentation of Leaf States.
    Hüther P; Schandry N; Jandrasits K; Bezrukov I; Becker C
    Plant Cell; 2020 Dec; 32(12):3674-3688. PubMed ID: 33037149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LeafJ: an ImageJ plugin for semi-automated leaf shape measurement.
    Maloof JN; Nozue K; Mumbach MR; Palmer CM
    J Vis Exp; 2013 Jan; (71):. PubMed ID: 23380664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative monitoring of Arabidopsis thaliana growth and development using high-throughput plant phenotyping.
    Arend D; Lange M; Pape JM; Weigelt-Fischer K; Arana-Ceballos F; Mücke I; Klukas C; Altmann T; Scholz U; Junker A
    Sci Data; 2016 Aug; 3():160055. PubMed ID: 27529152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Objective definition of rosette shape variation using a combined computer vision and data mining approach.
    Camargo A; Papadopoulou D; Spyropoulou Z; Vlachonasios K; Doonan JH; Gay AP
    PLoS One; 2014; 9(5):e96889. PubMed ID: 24804972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotiki: an open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants.
    Minervini M; Giuffrida MV; Perata P; Tsaftaris SA
    Plant J; 2017 Apr; 90(1):204-216. PubMed ID: 28066963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel mesh processing based technique for 3D plant analysis.
    Paproki A; Sirault X; Berry S; Furbank R; Fripp J
    BMC Plant Biol; 2012 May; 12():63. PubMed ID: 22553969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PHENOPSIS DB: an information system for Arabidopsis thaliana phenotypic data in an environmental context.
    Fabre J; Dauzat M; Nègre V; Wuyts N; Tireau A; Gennari E; Neveu P; Tisné S; Massonnet C; Hummel I; Granier C
    BMC Plant Biol; 2011 May; 11():77. PubMed ID: 21554668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. phenoVein-A Tool for Leaf Vein Segmentation and Analysis.
    Bühler J; Rishmawi L; Pflugfelder D; Huber G; Scharr H; Hülskamp M; Koornneef M; Schurr U; Jahnke S
    Plant Physiol; 2015 Dec; 169(4):2359-70. PubMed ID: 26468519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects.
    De Vylder J; Vandenbussche F; Hu Y; Philips W; Van Der Straeten D
    Plant Physiol; 2012 Nov; 160(3):1149-59. PubMed ID: 22942389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.
    Lee U; Chang S; Putra GA; Kim H; Kim DH
    PLoS One; 2018; 13(4):e0196615. PubMed ID: 29702690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution time-resolved imaging of in vitro Arabidopsis rosette growth.
    Dhondt S; Gonzalez N; Blomme J; De Milde L; Van Daele T; Van Akoleyen D; Storme V; Coppens F; T S Beemster G; Inzé D
    Plant J; 2014 Oct; 80(1):172-84. PubMed ID: 25041085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of feature point detectors for multimodal image registration in plant phenotyping.
    Henke M; Junker A; Neumann K; Altmann T; Gladilin E
    PLoS One; 2019; 14(9):e0221203. PubMed ID: 31568494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis.
    Biot E; Cortizo M; Burguet J; Kiss A; Oughou M; Maugarny-Calès A; Gonçalves B; Adroher B; Andrey P; Boudaoud A; Laufs P
    Development; 2016 Sep; 143(18):3417-28. PubMed ID: 27387872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-automated Root Image Analysis (saRIA).
    Narisetti N; Henke M; Seiler C; Shi R; Junker A; Altmann T; Gladilin E
    Sci Rep; 2019 Dec; 9(1):19674. PubMed ID: 31873104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners.
    Viscosi V; Cardini A
    PLoS One; 2011; 6(10):e25630. PubMed ID: 21991324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genetic control of leaf and petal allometric variations in Arabidopsis thaliana.
    Li X; Zhang Y; Yang S; Wu C; Shao Q; Feng X
    BMC Plant Biol; 2020 Dec; 20(1):547. PubMed ID: 33287712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects.
    Arvidsson S; Pérez-Rodríguez P; Mueller-Roeber B
    New Phytol; 2011 Aug; 191(3):895-907. PubMed ID: 21569033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of automated landmark identification on morphometric analyses.
    Percival CJ; Devine J; Darwin BC; Liu W; van Eede M; Henkelman RM; Hallgrimsson B
    J Anat; 2019 Jun; 234(6):917-935. PubMed ID: 30901082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.