These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
28. An image database of Drosophila melanogaster wings for phenomic and biometric analysis. Sonnenschein A; VanderZee D; Pitchers WR; Chari S; Dworkin I Gigascience; 2015 May; 4():25. PubMed ID: 27390931 [TBL] [Abstract][Full Text] [Related]
29. High-resolution computational imaging of leaf hair patterning using polarized light microscopy. Pomeranz M; Campbell J; Siegal-Gaskins D; Engelmeier J; Wilson T; Fernandez V; Brkljacic J; Grotewold E Plant J; 2013 Feb; 73(4):701-8. PubMed ID: 23163919 [TBL] [Abstract][Full Text] [Related]
30. Image Harvest: an open-source platform for high-throughput plant image processing and analysis. Knecht AC; Campbell MT; Caprez A; Swanson DR; Walia H J Exp Bot; 2016 May; 67(11):3587-99. PubMed ID: 27141917 [TBL] [Abstract][Full Text] [Related]
31. Prostate segmentation in MR images using discriminant boundary features. Yang M; Li X; Turkbey B; Choyke PL; Yan P IEEE Trans Biomed Eng; 2013 Feb; 60(2):479-88. PubMed ID: 23192474 [TBL] [Abstract][Full Text] [Related]
32. Three-dimensional definition of leaf morphological traits of Arabidopsis in silico phenotypic analysis. Kaminuma E; Heida N; Tsumoto Y; Nakazawa M; Goto N; Konagaya A; Matsui M; Toyoda T J Bioinform Comput Biol; 2005 Apr; 3(2):401-14. PubMed ID: 15852512 [TBL] [Abstract][Full Text] [Related]
33. PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. Granier C; Aguirrezabal L; Chenu K; Cookson SJ; Dauzat M; Hamard P; Thioux JJ; Rolland G; Bouchier-Combaud S; Lebaudy A; Muller B; Simonneau T; Tardieu F New Phytol; 2006; 169(3):623-35. PubMed ID: 16411964 [TBL] [Abstract][Full Text] [Related]
34. Comprehensive Methods for Leaf Geometric Morphometric Analyses. Klein LL; Svoboda HT Bio Protoc; 2017 May; 7(9):e2269. PubMed ID: 34541254 [TBL] [Abstract][Full Text] [Related]
35. DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics. Kienbaum L; Correa Abondano M; Blas R; Schmid K Plant Methods; 2021 Aug; 17(1):91. PubMed ID: 34419093 [TBL] [Abstract][Full Text] [Related]
36. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Bookstein FL Med Image Anal; 1997 Apr; 1(3):225-43. PubMed ID: 9873908 [TBL] [Abstract][Full Text] [Related]
37. A geometric-morphometric study of the Cretan humerus for sex identification. Kranioti EF; Bastir M; Sánchez-Meseguer A; Rosas A Forensic Sci Int; 2009 Aug; 189(1-3):111.e1-8. PubMed ID: 19446415 [TBL] [Abstract][Full Text] [Related]
38. PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics. Möller B; Poeschl Y; Plötner R; Bürstenbinder K Plant Physiol; 2017 Nov; 175(3):998-1017. PubMed ID: 28931626 [TBL] [Abstract][Full Text] [Related]
39. AraDQ: an automated digital phenotyping software for quantifying disease symptoms of flood-inoculated Arabidopsis seedlings. Lee JH; Lee U; Yoo JH; Lee TS; Jung JH; Kim HS Plant Methods; 2024 Mar; 20(1):44. PubMed ID: 38493119 [TBL] [Abstract][Full Text] [Related]