These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29917076)

  • 21. Robotic Assay for Drought (RoAD): an automated phenotyping system for brassinosteroid and drought responses.
    Xiang L; Nolan TM; Bao Y; Elmore M; Tuel T; Gai J; Shah D; Wang P; Huser NM; Hurd AM; McLaughlin SA; Howell SH; Walley JW; Yin Y; Tang L
    Plant J; 2021 Sep; 107(6):1837-1853. PubMed ID: 34216161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity.
    Tisné S; Serrand Y; Bach L; Gilbault E; Ben Ameur R; Balasse H; Voisin R; Bouchez D; Durand-Tardif M; Guerche P; Chareyron G; Da Rugna J; Camilleri C; Loudet O
    Plant J; 2013 May; 74(3):534-44. PubMed ID: 23452317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis.
    Tanabata T; Shibaya T; Hori K; Ebana K; Yano M
    Plant Physiol; 2012 Dec; 160(4):1871-80. PubMed ID: 23054566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying developmental phases in the Arabidopsis thaliana rosette using integrative segmentation models.
    Lièvre M; Granier C; Guédon Y
    New Phytol; 2016 Jun; 210(4):1466-78. PubMed ID: 26853434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic architecture of variation in Arabidopsis thaliana rosettes.
    Morón-García O; Garzón-Martínez GA; Martínez-Martín MJP; Brook J; Corke FMK; Doonan JH; Camargo Rodríguez AV
    PLoS One; 2022; 17(2):e0263985. PubMed ID: 35171969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LeafAnalyser: a computational method for rapid and large-scale analyses of leaf shape variation.
    Weight C; Parnham D; Waites R
    Plant J; 2008 Feb; 53(3):578-86. PubMed ID: 18028263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying leaf venation patterns: two-dimensional maps.
    Rolland-Lagan AG; Amin M; Pakulska M
    Plant J; 2009 Jan; 57(1):195-205. PubMed ID: 18785998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An image database of Drosophila melanogaster wings for phenomic and biometric analysis.
    Sonnenschein A; VanderZee D; Pitchers WR; Chari S; Dworkin I
    Gigascience; 2015 May; 4():25. PubMed ID: 27390931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-resolution computational imaging of leaf hair patterning using polarized light microscopy.
    Pomeranz M; Campbell J; Siegal-Gaskins D; Engelmeier J; Wilson T; Fernandez V; Brkljacic J; Grotewold E
    Plant J; 2013 Feb; 73(4):701-8. PubMed ID: 23163919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.
    Knecht AC; Campbell MT; Caprez A; Swanson DR; Walia H
    J Exp Bot; 2016 May; 67(11):3587-99. PubMed ID: 27141917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prostate segmentation in MR images using discriminant boundary features.
    Yang M; Li X; Turkbey B; Choyke PL; Yan P
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):479-88. PubMed ID: 23192474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional definition of leaf morphological traits of Arabidopsis in silico phenotypic analysis.
    Kaminuma E; Heida N; Tsumoto Y; Nakazawa M; Goto N; Konagaya A; Matsui M; Toyoda T
    J Bioinform Comput Biol; 2005 Apr; 3(2):401-14. PubMed ID: 15852512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit.
    Granier C; Aguirrezabal L; Chenu K; Cookson SJ; Dauzat M; Hamard P; Thioux JJ; Rolland G; Bouchier-Combaud S; Lebaudy A; Muller B; Simonneau T; Tardieu F
    New Phytol; 2006; 169(3):623-35. PubMed ID: 16411964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive Methods for Leaf Geometric Morphometric Analyses.
    Klein LL; Svoboda HT
    Bio Protoc; 2017 May; 7(9):e2269. PubMed ID: 34541254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics.
    Kienbaum L; Correa Abondano M; Blas R; Schmid K
    Plant Methods; 2021 Aug; 17(1):91. PubMed ID: 34419093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape.
    Bookstein FL
    Med Image Anal; 1997 Apr; 1(3):225-43. PubMed ID: 9873908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A geometric-morphometric study of the Cretan humerus for sex identification.
    Kranioti EF; Bastir M; Sánchez-Meseguer A; Rosas A
    Forensic Sci Int; 2009 Aug; 189(1-3):111.e1-8. PubMed ID: 19446415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics.
    Möller B; Poeschl Y; Plötner R; Bürstenbinder K
    Plant Physiol; 2017 Nov; 175(3):998-1017. PubMed ID: 28931626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AraDQ: an automated digital phenotyping software for quantifying disease symptoms of flood-inoculated Arabidopsis seedlings.
    Lee JH; Lee U; Yoo JH; Lee TS; Jung JH; Kim HS
    Plant Methods; 2024 Mar; 20(1):44. PubMed ID: 38493119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HTPheno: an image analysis pipeline for high-throughput plant phenotyping.
    Hartmann A; Czauderna T; Hoffmann R; Stein N; Schreiber F
    BMC Bioinformatics; 2011 May; 12():148. PubMed ID: 21569390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.