BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29917309)

  • 1. High-Throughput Design of Biocompatible Enzyme-Based Hydrogel Microparticles with Autonomous Movement.
    Keller S; Teora SP; Hu GX; Nijemeisland M; Wilson DA
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9814-9817. PubMed ID: 29917309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsatile peptide release from multi-layered hydrogel formulations consisting of poly(ethylene glycol)-grafted and ungrafted dextrans.
    Moriyama K; Ooya T; Yui N
    J Biomater Sci Polym Ed; 1999; 10(12):1251-64. PubMed ID: 10673020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compartmentalized Aqueous-in-Aqueous Droplets for Flow Biocatalysis.
    Wang Y; Dong Y; Liu H; Yin W; Guo T; Yuan H; Meng T
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5009-5016. PubMed ID: 35049284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen-Purged Microfluidic Device to Enhance Cell Viability in Photopolymerized PEG Hydrogel Microparticles.
    Xia B; Krutkramelis K; Oakey J
    Biomacromolecules; 2016 Jul; 17(7):2459-65. PubMed ID: 27285343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of precursor and cross-linking parameters on the properties of dextran-allyl isocyanate-ethylamine/poly(ethylene glycol diacrylate) biodegradable hydrogels and their release of ovalbumin.
    Sun G; Chen FA; Chu CC
    J Biomater Sci Polym Ed; 2009; 20(14):2003-22. PubMed ID: 19874674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteolytically activated anti-bacterial hydrogel microspheres.
    Buhrman JS; Cook LC; Rayahin JE; Federle MJ; Gemeinhart RA
    J Control Release; 2013 Nov; 171(3):288-95. PubMed ID: 23816641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential Thiol-Ene and Tetrazine Click Reactions for the Polymerization and Functionalization of Hydrogel Microparticles.
    Jivan F; Yegappan R; Pearce H; Carrow JK; McShane M; Gaharwar AK; Alge DL
    Biomacromolecules; 2016 Nov; 17(11):3516-3523. PubMed ID: 27656910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tensile creep properties of interpenetrating networks containing gelatin and poly(ethylene glycol) diacrylate.
    Toth M; Williams K; Hayes S; Kao WJ
    J Biomater Sci Polym Ed; 2005; 16(7):925-32. PubMed ID: 16128297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel hydrogels as supports for in vitro cell growth: poly(ethylene glycol)- and gelatine-based (meth)acrylamidopeptide macromonomers.
    Zimmermann J; Bittner K; Stark B; Mülhaupt R
    Biomaterials; 2002 May; 23(10):2127-34. PubMed ID: 11962653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic-assisted fabrication of flexible and location traceable organo-motor.
    Seo KD; Kwak BK; Sanchez S; Kim DS
    IEEE Trans Nanobioscience; 2015 Apr; 14(3):298-304. PubMed ID: 25751871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device.
    Krutkramelis K; Xia B; Oakey J
    Lab Chip; 2016 Apr; 16(8):1457-65. PubMed ID: 26987384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of macroporous poly(ethylene glycol) hydrogel arrays within microfluidic channels.
    Lee AG; Arena CP; Beebe DJ; Palecek SP
    Biomacromolecules; 2010 Dec; 11(12):3316-24. PubMed ID: 21028794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impregnation of tubular self-assemblies into dextran hydrogels.
    Sun G; Chu CC
    Langmuir; 2010 Feb; 26(4):2831-8. PubMed ID: 20141216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput flow alignment of barcoded hydrogel microparticles.
    Chapin SC; Pregibon DC; Doyle PS
    Lab Chip; 2009 Nov; 9(21):3100-9. PubMed ID: 19823726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile modulation of cell adhesion to a poly(ethylene glycol) diacrylate film with incorporation of polystyrene nano-spheres.
    Yang W; Yu H; Li G; Wang Y; Liu L
    Biomed Microdevices; 2016 Dec; 18(6):107. PubMed ID: 27830453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Engineering of Crater-Terrain Hydrogel Microparticles: Toward Novel Cell Carriers.
    Zheng Y; Wu Z; Hou Y; Li N; Zhang Q; Lin JM
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):7833-7840. PubMed ID: 36630085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a biostable replacement for PEGDA hydrogels.
    Browning MB; Cosgriff-Hernandez E
    Biomacromolecules; 2012 Mar; 13(3):779-86. PubMed ID: 22324325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device.
    Chen M; Aluunmani R; Bolognesi G; Vladisavljević GT
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
    Cao Y; Lee BH; Peled HB; Venkatraman SS
    J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multilayer microfluidic PEGDA hydrogels.
    Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL
    Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.