These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29917323)

  • 1. CRISPR-Mediated Genome Editing and Gene Repression in Scheffersomyces stipitis.
    Cao M; Gao M; Ploessl D; Song C; Shao Z
    Biotechnol J; 2018 Sep; 13(9):e1700598. PubMed ID: 29917323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica.
    Schwartz C; Frogue K; Ramesh A; Misa J; Wheeldon I
    Biotechnol Bioeng; 2017 Dec; 114(12):2896-2906. PubMed ID: 28832943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Centromeric DNA Facilitates Nonconventional Yeast Genetic Engineering.
    Cao M; Gao M; Lopez-Garcia CL; Wu Y; Seetharam AS; Severin AJ; Shao Z
    ACS Synth Biol; 2017 Aug; 6(8):1545-1553. PubMed ID: 28391682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of gene editing by manipulation of DNA repair mechanisms.
    Danner E; Bashir S; Yumlu S; Wurst W; Wefers B; Kühn R
    Mamm Genome; 2017 Aug; 28(7-8):262-274. PubMed ID: 28374058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells.
    Zhu L; Mon H; Xu J; Lee JM; Kusakabe T
    Sci Rep; 2015 Dec; 5():18103. PubMed ID: 26657947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein.
    Ma Y; Chen W; Zhang X; Yu L; Dong W; Pan S; Gao S; Huang X; Zhang L
    RNA Biol; 2016 Jul; 13(7):605-12. PubMed ID: 27163284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas9; an efficient tool for precise plant genome editing.
    Islam W
    Mol Cell Probes; 2018 Jun; 39():47-52. PubMed ID: 29621557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CRISPR-Cpf1-Assisted Non-Homologous End Joining Genome Editing System of Mycobacterium smegmatis.
    Sun B; Yang J; Yang S; Ye RD; Chen D; Jiang Y
    Biotechnol J; 2018 Sep; 13(9):e1700588. PubMed ID: 30039929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-Mediated Targeted Knockin of Exogenous Reporter Genes in Zebrafish.
    Kawahara A
    Methods Mol Biol; 2017; 1630():165-173. PubMed ID: 28643258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.
    Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW
    Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a CRISPR/Cas9-Based Tool for Gene Deletion in
    Tran VG; Cao M; Fatma Z; Song X; Zhao H
    mSphere; 2019 Jun; 4(3):. PubMed ID: 31243078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing.
    Vartak SV; Raghavan SC
    FEBS J; 2015 Nov; 282(22):4289-94. PubMed ID: 26290158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha.
    Numamoto M; Maekawa H; Kaneko Y
    J Biosci Bioeng; 2017 Nov; 124(5):487-492. PubMed ID: 28666889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leveraging the Hermes Transposon to Accelerate the Development of Nonconventional Yeast-based Microbial Cell Factories.
    Zhao Y; Yao Z; Ploessl D; Ghosh S; Monti M; Schindler D; Gao M; Cai Y; Qiao M; Yang C; Cao M; Shao Z
    ACS Synth Biol; 2020 Jul; 9(7):1736-1752. PubMed ID: 32396718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CRISPR-Cas9 System-Mediated Genetic Disruption and Multi-fragment Assembly in
    Shi Y; Zhang L; Zhang M; Chu J; Xia Y; Yang H; Liu L; Chen X
    ACS Synth Biol; 2022 Apr; 11(4):1497-1509. PubMed ID: 35294186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell Synchronization Enhances Nuclear Transformation and Genome Editing
    Angstenberger M; de Signori F; Vecchi V; Dall'Osto L; Bassi R
    ACS Synth Biol; 2020 Oct; 9(10):2840-2850. PubMed ID: 32916053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond Native Cas9: Manipulating Genomic Information and Function.
    Mitsunobu H; Teramoto J; Nishida K; Kondo A
    Trends Biotechnol; 2017 Oct; 35(10):983-996. PubMed ID: 28739220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.