BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29917323)

  • 1. CRISPR-Mediated Genome Editing and Gene Repression in Scheffersomyces stipitis.
    Cao M; Gao M; Ploessl D; Song C; Shao Z
    Biotechnol J; 2018 Sep; 13(9):e1700598. PubMed ID: 29917323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica.
    Schwartz C; Frogue K; Ramesh A; Misa J; Wheeldon I
    Biotechnol Bioeng; 2017 Dec; 114(12):2896-2906. PubMed ID: 28832943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Centromeric DNA Facilitates Nonconventional Yeast Genetic Engineering.
    Cao M; Gao M; Lopez-Garcia CL; Wu Y; Seetharam AS; Severin AJ; Shao Z
    ACS Synth Biol; 2017 Aug; 6(8):1545-1553. PubMed ID: 28391682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of gene editing by manipulation of DNA repair mechanisms.
    Danner E; Bashir S; Yumlu S; Wurst W; Wefers B; Kühn R
    Mamm Genome; 2017 Aug; 28(7-8):262-274. PubMed ID: 28374058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells.
    Zhu L; Mon H; Xu J; Lee JM; Kusakabe T
    Sci Rep; 2015 Dec; 5():18103. PubMed ID: 26657947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing in rats by inhibiting NHEJ and using Cas9 protein.
    Ma Y; Chen W; Zhang X; Yu L; Dong W; Pan S; Gao S; Huang X; Zhang L
    RNA Biol; 2016 Jul; 13(7):605-12. PubMed ID: 27163284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas9; an efficient tool for precise plant genome editing.
    Islam W
    Mol Cell Probes; 2018 Jun; 39():47-52. PubMed ID: 29621557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CRISPR-Cpf1-Assisted Non-Homologous End Joining Genome Editing System of Mycobacterium smegmatis.
    Sun B; Yang J; Yang S; Ye RD; Chen D; Jiang Y
    Biotechnol J; 2018 Sep; 13(9):e1700588. PubMed ID: 30039929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-Mediated Targeted Knockin of Exogenous Reporter Genes in Zebrafish.
    Kawahara A
    Methods Mol Biol; 2017; 1630():165-173. PubMed ID: 28643258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.
    Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW
    Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a CRISPR/Cas9-Based Tool for Gene Deletion in
    Tran VG; Cao M; Fatma Z; Song X; Zhao H
    mSphere; 2019 Jun; 4(3):. PubMed ID: 31243078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing.
    Vartak SV; Raghavan SC
    FEBS J; 2015 Nov; 282(22):4289-94. PubMed ID: 26290158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha.
    Numamoto M; Maekawa H; Kaneko Y
    J Biosci Bioeng; 2017 Nov; 124(5):487-492. PubMed ID: 28666889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leveraging the Hermes Transposon to Accelerate the Development of Nonconventional Yeast-based Microbial Cell Factories.
    Zhao Y; Yao Z; Ploessl D; Ghosh S; Monti M; Schindler D; Gao M; Cai Y; Qiao M; Yang C; Cao M; Shao Z
    ACS Synth Biol; 2020 Jul; 9(7):1736-1752. PubMed ID: 32396718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CRISPR-Cas9 System-Mediated Genetic Disruption and Multi-fragment Assembly in
    Shi Y; Zhang L; Zhang M; Chu J; Xia Y; Yang H; Liu L; Chen X
    ACS Synth Biol; 2022 Apr; 11(4):1497-1509. PubMed ID: 35294186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell Synchronization Enhances Nuclear Transformation and Genome Editing
    Angstenberger M; de Signori F; Vecchi V; Dall'Osto L; Bassi R
    ACS Synth Biol; 2020 Oct; 9(10):2840-2850. PubMed ID: 32916053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond Native Cas9: Manipulating Genomic Information and Function.
    Mitsunobu H; Teramoto J; Nishida K; Kondo A
    Trends Biotechnol; 2017 Oct; 35(10):983-996. PubMed ID: 28739220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.