These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29917330)

  • 1. Microbial Methylotrophic Metabolism: Recent Metabolic Modeling Efforts and Their Applications In Industrial Biotechnology.
    Lieven C; Herrgård MJ; Sonnenschein N
    Biotechnol J; 2018 Aug; 13(8):e1800011. PubMed ID: 29917330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis.
    Richards MA; Lie TJ; Zhang J; Ragsdale SW; Leigh JA; Price ND
    J Bacteriol; 2016 Dec; 198(24):3379-3390. PubMed ID: 27736793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylobacterium extorquens: methylotrophy and biotechnological applications.
    Ochsner AM; Sonntag F; Buchhaupt M; Schrader J; Vorholt JA
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):517-34. PubMed ID: 25432674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological conversion of methane to chemicals and fuels: technical challenges and issues.
    Hwang IY; Nguyen AD; Nguyen TT; Nguyen LT; Lee OK; Lee EY
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3071-3080. PubMed ID: 29492639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylotrophs in natural habitats: current insights through metagenomics.
    Chistoserdova L
    Appl Microbiol Biotechnol; 2015 Jul; 99(14):5763-79. PubMed ID: 26051673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs.
    Gregory GJ; Bennett RK; Papoutsakis ET
    Metab Eng; 2022 May; 71():99-116. PubMed ID: 34547453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic processes of Methanococcus maripaludis and potential applications.
    Goyal N; Zhou Z; Karimi IA
    Microb Cell Fact; 2016 Jun; 15(1):107. PubMed ID: 27286964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial production of uracil by an isolated Methylobacterium sp. WJ4 using methanol.
    Lee W; Kim S; Song I; Kwon Y; Park S; Oh BK; Oh HB; Lee J
    Enzyme Microb Technol; 2018 Apr; 111():63-66. PubMed ID: 29421038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane.
    Goyal N; Widiastuti H; Karimi IA; Zhou Z
    Mol Biosyst; 2014 May; 10(5):1043-54. PubMed ID: 24553424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments.
    Martinez-Cruz K; Leewis MC; Herriott IC; Sepulveda-Jauregui A; Anthony KW; Thalasso F; Leigh MB
    Sci Total Environ; 2017 Dec; 607-608():23-31. PubMed ID: 28686892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Trends in Methylotrophy.
    Chistoserdova L; Kalyuzhnaya MG
    Trends Microbiol; 2018 Aug; 26(8):703-714. PubMed ID: 29471983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methane monooxygenases: central enzymes in methanotrophy with promising biotechnological applications.
    Khider MLK; Brautaset T; Irla M
    World J Microbiol Biotechnol; 2021 Mar; 37(4):72. PubMed ID: 33765207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotechnologies for greenhouse gases (CH₄, N₂O, and CO₂) abatement: state of the art and challenges.
    López JC; Quijano G; Souza TS; Estrada JM; Lebrero R; Muñoz R
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2277-303. PubMed ID: 23389341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Systems biology for industrial biotechnology].
    Zheng X; Zheng P; Sun J
    Sheng Wu Gong Cheng Xue Bao; 2019 Oct; 35(10):1955-1973. PubMed ID: 31668041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Aerobic methylotroph bacteria as phytosymbionts].
    Trotsenko IuA; Ivanova EG; Doronina NV
    Mikrobiologiia; 2001; 70(6):725-36. PubMed ID: 11785128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria.
    Schrader J; Schilling M; Holtmann D; Sell D; Filho MV; Marx A; Vorholt JA
    Trends Biotechnol; 2009 Feb; 27(2):107-15. PubMed ID: 19111927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs.
    Bennett RK; Steinberg LM; Chen W; Papoutsakis ET
    Curr Opin Biotechnol; 2018 Apr; 50():81-93. PubMed ID: 29216497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of methylotrophs: can single carbon be harnessed for biotechnology?
    Chistoserdova L
    Curr Opin Biotechnol; 2018 Apr; 50():189-194. PubMed ID: 29414059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current state of genome-scale modeling in filamentous fungi.
    Brandl J; Andersen MR
    Biotechnol Lett; 2015 Jun; 37(6):1131-9. PubMed ID: 25700817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.