These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2991897)

  • 21. Rat hippocampal neurons in culture: potassium conductances.
    Segal M; Barker JL
    J Neurophysiol; 1984 Jun; 51(6):1409-33. PubMed ID: 6330315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Whole cell patch-clamp recordings of rat midbrain dopaminergic neurons isolate a sulphonylurea- and ATP-sensitive component of potassium currents activated by hypoxia.
    Guatteo E; Federici M; Siniscalchi A; Knöpfel T; Mercuri NB; Bernardi G
    J Neurophysiol; 1998 Mar; 79(3):1239-45. PubMed ID: 9497405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two types of voltage-dependent potassium channels in outer hair cells from the guinea pig cochlea.
    van Den Abbeele T; Teulon J; Huy PT
    Am J Physiol; 1999 Nov; 277(5):C913-25. PubMed ID: 10564084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.
    Chen Y; Sun XD; Herness S
    J Neurophysiol; 1996 Feb; 75(2):820-31. PubMed ID: 8714655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a delayed outward-rectifying K+ conductance in cultured mouse peritoneal macrophages.
    Ypey DL; Clapham DE
    Proc Natl Acad Sci U S A; 1984 May; 81(10):3083-7. PubMed ID: 6328495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hyperpolarization-activated cation current (Ih) in neurons of the medial nucleus of the trapezoid body: voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem.
    Banks MI; Pearce RA; Smith PH
    J Neurophysiol; 1993 Oct; 70(4):1420-32. PubMed ID: 7506755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of vasoactive intestinal contractor on voltage-activated Ca2+ currents in feline parasympathetic neurons.
    Nishimura T; Krier J; Akasu T
    Am J Physiol; 1993 Dec; 265(6 Pt 1):G1158-68. PubMed ID: 8279567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ionic conductances of monkey solitary cone inner segments.
    Yagi T; Macleish PR
    J Neurophysiol; 1994 Feb; 71(2):656-65. PubMed ID: 7513752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane properties underlying patterns of GABA-dependent action potentials in developing mouse hypothalamic neurons.
    Wang YF; Gao XB; van den Pol AN
    J Neurophysiol; 2001 Sep; 86(3):1252-65. PubMed ID: 11535674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Voltage-clamp analysis of the ionic conductances in a leech neuron with a purely calcium-dependent action potential.
    Johansen J; Yang J; Kleinhaus AL
    J Neurophysiol; 1987 Dec; 58(6):1468-84. PubMed ID: 2449519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of multiple potassium currents by metabotropic glutamate receptors in neurons of the hypothalamic supraoptic nucleus.
    Schrader LA; Tasker JG
    J Neurophysiol; 1997 Dec; 78(6):3428-37. PubMed ID: 9405556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Norepinephrine activates potassium conductance in neurons of the turtle cerebral cortex.
    Blanton KJ; Kriegstein AR
    Brain Res; 1992 Jan; 570(1-2):42-8. PubMed ID: 1617428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adenosine inhibits locus coeruleus neurons: an intracellular study in a rat brain slice preparation.
    Shefner SA; Chiu TH
    Brain Res; 1986 Feb; 366(1-2):364-8. PubMed ID: 3008912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of 2-chloroadenosine on electric potentials in brain synaptic membrane vesicles.
    Michaelis ML; Michaelis EK
    Biochim Biophys Acta; 1981 Oct; 648(1):55-62. PubMed ID: 7295731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pentylenetetrazole-induced changes of the single potassium channel in primary cultured cerebral cortical neurons.
    Sugaya E; Sugaya A; Takagi T; Tsuda T; Kajiwara K; Yasuda K; Komatsubara J
    Brain Res; 1989 Sep; 497(2):239-44. PubMed ID: 2819423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal.
    Rainnie DG; Grunze HC; McCarley RW; Greene RW
    Science; 1994 Feb; 263(5147):689-92. PubMed ID: 8303279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adenosine and ATP: presynaptic effects at the cholinergic nerve terminal.
    Brown SJ
    Biochem Soc Trans; 1988 Aug; 16(4):442-3. PubMed ID: 3208971
    [No Abstract]   [Full Text] [Related]  

  • 38. Mediation by the corticostriatal input of the in vivo increase in rat striatal acetylcholine content induced by 2-chloroadenosine.
    Consolo S; Forloni GL; Fisone G; Sieklucka M; Ladinsky H
    Biochem Pharmacol; 1983 Oct; 32(19):2993-6. PubMed ID: 6626270
    [No Abstract]   [Full Text] [Related]  

  • 39. Different sensitivities to ethanol of three early transient voltage clamp currents of aplysia neurons.
    Bergmann MC; Klee MR; Faber DS
    Pflugers Arch; 1974 Apr; 348(2):139-53. PubMed ID: 4859276
    [No Abstract]   [Full Text] [Related]  

  • 40. Adenosine receptors and calcium: basis for proposing a third (A3) adenosine receptor.
    Ribeiro JA; Sebastião AM
    Prog Neurobiol; 1986; 26(3):179-209. PubMed ID: 2425391
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.