BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 29920325)

  • 1. iTRAQ-based analysis of the Arabidopsis proteome reveals insights into the potential mechanisms of anthocyanin accumulation regulation in response to phosphate deficiency.
    Wang ZQ; Zhou X; Dong L; Guo J; Chen Y; Zhang Y; Wu L; Xu M
    J Proteomics; 2018 Jul; 184():39-53. PubMed ID: 29920325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WRKY33 negatively regulates anthocyanin biosynthesis and cooperates with PHR1 to mediate acclimation to phosphate starvation.
    Tao H; Gao F; Linying Li ; He Y; Zhang X; Wang M; Wei J; Zhao Y; Zhang C; Wang Q; Hong G
    Plant Commun; 2024 May; 5(5):100821. PubMed ID: 38229439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PHR1 positively regulates phosphate starvation-induced anthocyanin accumulation through direct upregulation of genes F3'H and LDOX in Arabidopsis.
    Liu Z; Wu X; Wang E; Liu Y; Wang Y; Zheng Q; Han Y; Chen Z; Zhang Y
    Planta; 2022 Jul; 256(2):42. PubMed ID: 35842503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of MKK9-MPK3/MPK6 enhances phosphate acquisition in Arabidopsis thaliana.
    Lei L; Li Y; Wang Q; Xu J; Chen Y; Yang H; Ren D
    New Phytol; 2014 Sep; 203(4):1146-1160. PubMed ID: 24865627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the Phosphate-Deficient Responses by MicroRNA156 and its Targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 in Arabidopsis.
    Lei KJ; Lin YM; Ren J; Bai L; Miao YC; An GY; Song CP
    Plant Cell Physiol; 2016 Jan; 57(1):192-203. PubMed ID: 26647245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GA-DELLA pathway is involved in regulation of nitrogen deficiency-induced anthocyanin accumulation.
    Zhang Y; Liu Z; Liu J; Lin S; Wang J; Lin W; Xu W
    Plant Cell Rep; 2017 Apr; 36(4):557-569. PubMed ID: 28275852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of phosphate deficiency-induced anthocyanin accumulation on the expression of Solanum lycopersicum GLABRA3 (SlGL3) in tomato.
    Tominaga-Wada R; Masakane A; Wada T
    Plant Signal Behav; 2018; 13(6):e1477907. PubMed ID: 29944442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drastic anthocyanin increase in response to PAP1 overexpression in fls1 knockout mutant confers enhanced osmotic stress tolerance in Arabidopsis thaliana.
    Lee WJ; Jeong CY; Kwon J; Van Kien V; Lee D; Hong SW; Lee H
    Plant Cell Rep; 2016 Nov; 35(11):2369-2379. PubMed ID: 27562381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of Phosphate Deficiency-Induced Metabolic Changes by Iron Availability in
    Chutia R; Scharfenberg S; Neumann S; Abel S; Ziegler J
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPX4 interacts with both PHR1 and PAP1 to regulate critical steps in phosphorus-status-dependent anthocyanin biosynthesis.
    He Y; Zhang X; Li L; Sun Z; Li J; Chen X; Hong G
    New Phytol; 2021 Apr; 230(1):205-217. PubMed ID: 33617039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings.
    Zhang Y; Zheng S; Liu Z; Wang L; Bi Y
    J Plant Physiol; 2011 Mar; 168(4):367-74. PubMed ID: 20932601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis.
    Jiang C; Gao X; Liao L; Harberd NP; Fu X
    Plant Physiol; 2007 Dec; 145(4):1460-70. PubMed ID: 17932308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis.
    Wang L; ZengJ HQ; Song J; Feng SJ; Yang ZM
    Plant Sci; 2015 Sep; 238():273-85. PubMed ID: 26259194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis.
    Li T; Jia KP; Lian HL; Yang X; Li L; Yang HQ
    Biochem Biophys Res Commun; 2014 Nov; 454(1):78-83. PubMed ID: 25450360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Arabidopsis gene hypersensitive to phosphate starvation 3 encodes ethylene overproduction 1.
    Wang L; Dong J; Gao Z; Liu D
    Plant Cell Physiol; 2012 Jun; 53(6):1093-105. PubMed ID: 22623414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SlPHL1 is involved in low phosphate stress promoting anthocyanin biosynthesis by directly upregulation of genes SlF3H, SlF3'H, and SlLDOX in tomato.
    Wu X; Liu Z; Liu Y; Wang E; Zhang D; Huang S; Li C; Zhang Y; Chen Z; Zhang Y
    Plant Physiol Biochem; 2023 Jul; 200():107801. PubMed ID: 37269822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana.
    Chen Q; Man C; Li D; Tan H; Xie Y; Huang J
    Mol Plant; 2016 Dec; 9(12):1609-1619. PubMed ID: 27720844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings.
    Peng Z; Han C; Yuan L; Zhang K; Huang H; Ren C
    J Integr Plant Biol; 2011 Aug; 53(8):632-40. PubMed ID: 21545406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation.
    Lan P; Li W; Schmidt W
    Mol Cell Proteomics; 2012 Nov; 11(11):1156-66. PubMed ID: 22843991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses.
    Miura K; Rus A; Sharkhuu A; Yokoi S; Karthikeyan AS; Raghothama KG; Baek D; Koo YD; Jin JB; Bressan RA; Yun DJ; Hasegawa PM
    Proc Natl Acad Sci U S A; 2005 May; 102(21):7760-5. PubMed ID: 15894620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.