BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 29920325)

  • 21. Nitrogen deficiency- and sucrose-induced anthocyanin biosynthesis is modulated by HISTONE DEACETYLASE15 in Arabidopsis.
    Liao HS; Yang CC; Hsieh MH
    J Exp Bot; 2022 Jun; 73(11):3726-3742. PubMed ID: 35182426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular mechanism of phosphorous signaling inducing anthocyanin accumulation in Arabidopsis.
    Li H; He K; Zhang Z; Hu Y
    Plant Physiol Biochem; 2023 Mar; 196():121-129. PubMed ID: 36706691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comprehensive differential proteomic study of nitrate deprivation in Arabidopsis reveals complex regulatory networks of plant nitrogen responses.
    Wang X; Bian Y; Cheng K; Zou H; Sun SS; He JX
    J Proteome Res; 2012 Apr; 11(4):2301-15. PubMed ID: 22329444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis.
    Lei M; Liu Y; Zhang B; Zhao Y; Wang X; Zhou Y; Raghothama KG; Liu D
    Plant Physiol; 2011 Jul; 156(3):1116-30. PubMed ID: 21346170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic analysis of Arabidopsis thaliana ecotypes with contrasted root architecture in response to phosphate deficiency.
    Chevalier F; Rossignol M
    J Plant Physiol; 2011 Nov; 168(16):1885-90. PubMed ID: 21835495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor.
    Gou JY; Felippes FF; Liu CJ; Weigel D; Wang JW
    Plant Cell; 2011 Apr; 23(4):1512-22. PubMed ID: 21487097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphatidylinositol phosphate 5-kinase genes respond to phosphate deficiency for root hair elongation in Arabidopsis thaliana.
    Wada Y; Kusano H; Tsuge T; Aoyama T
    Plant J; 2015 Feb; 81(3):426-37. PubMed ID: 25477067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation.
    Wang J; Wang Y; Yang J; Ma C; Zhang Y; Ge T; Qi Z; Kang Y
    J Integr Plant Biol; 2015 Aug; 57(8):708-21. PubMed ID: 25494721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The involvement of abscisic acid-insensitive mutants in low phosphate stress responses during rhizosphere acidification, anthocyanin accumulation and Pi homeostasis in Arabidopsis.
    Lei KJ; Zhou H; Gu DL; An GY
    Plant Sci; 2022 Sep; 322():111358. PubMed ID: 35718336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphate (Pi) Starvation Up-Regulated
    Mo X; Zhang M; Zhang Z; Lu X; Liang C; Tian J
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative expression profiling reveals a role of the root apoplast in local phosphate response.
    Hoehenwarter W; Mönchgesang S; Neumann S; Majovsky P; Abel S; Müller J
    BMC Plant Biol; 2016 Apr; 16():106. PubMed ID: 27121119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ROS Induces Anthocyanin Production Via Late Biosynthetic Genes and Anthocyanin Deficiency Confers the Hypersensitivity to ROS-Generating Stresses in Arabidopsis.
    Xu Z; Mahmood K; Rothstein SJ
    Plant Cell Physiol; 2017 Aug; 58(8):1364-1377. PubMed ID: 28586465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tissue- and isoform-specific phytochrome regulation of light-dependent anthocyanin accumulation in Arabidopsis thaliana.
    Warnasooriya SN; Porter KJ; Montgomery BL
    Plant Signal Behav; 2011 May; 6(5):624-31. PubMed ID: 21455024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis.
    Wang X; Wang X; Hu Q; Dai X; Tian H; Zheng K; Wang X; Mao T; Chen JG; Wang S
    Plant J; 2015 Jul; 83(2):300-11. PubMed ID: 26017690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants.
    Cui LG; Shan JX; Shi M; Gao JP; Lin HX
    Plant J; 2014 Dec; 80(6):1108-17. PubMed ID: 25345491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The function of LPR1 is controlled by an element in the promoter and is independent of SUMO E3 Ligase SIZ1 in response to low Pi stress in Arabidopsis thaliana.
    Wang X; Du G; Wang X; Meng Y; Li Y; Wu P; Yi K
    Plant Cell Physiol; 2010 Mar; 51(3):380-94. PubMed ID: 20071375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Double-stranded RNA-binding protein DRB3 negatively regulates anthocyanin biosynthesis by modulating PAP1 expression in Arabidopsis thaliana.
    Sawano H; Matsuzaki T; Usui T; Tabara M; Fukudome A; Kanaya A; Tanoue D; Hiraguri A; Horiguchi G; Ohtani M; Demura T; Kozaki T; Ishii K; Moriyama H; Fukuhara T
    J Plant Res; 2017 Jan; 130(1):45-55. PubMed ID: 27995376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional conservation of plant secondary metabolic enzymes revealed by complementation of Arabidopsis flavonoid mutants with maize genes.
    Dong X; Braun EL; Grotewold E
    Plant Physiol; 2001 Sep; 127(1):46-57. PubMed ID: 11553733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ethylene Response Factor070 regulates root development and phosphate starvation-mediated responses.
    Ramaiah M; Jain A; Raghothama KG
    Plant Physiol; 2014 Mar; 164(3):1484-98. PubMed ID: 24394776
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arabidopsis thaliana mutant lpsi reveals impairment in the root responses to local phosphate availability.
    Karthikeyan AS; Jain A; Nagarajan VK; Sinilal B; Sahi SV; Raghothama KG
    Plant Physiol Biochem; 2014 Apr; 77():60-72. PubMed ID: 24561248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.