BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 29920375)

  • 21. Kernel regression estimation of fiber orientation mixtures in diffusion MRI.
    Cabeen RP; Bastin ME; Laidlaw DH
    Neuroimage; 2016 Feb; 127():158-172. PubMed ID: 26691524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of local white matter abnormality in Parkinson's disease by using an automatic fiber tract parcellation.
    Wang J; Zhang F; Zhao C; Zeng Q; He J; O'Donnell LJ; Feng Y
    Behav Brain Res; 2020 Sep; 394():112805. PubMed ID: 32673707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative tract-based white matter development from birth to age 2years.
    Geng X; Gouttard S; Sharma A; Gu H; Styner M; Lin W; Gerig G; Gilmore JH
    Neuroimage; 2012 Jul; 61(3):542-57. PubMed ID: 22510254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A registration method for improving quantitative assessment in probabilistic diffusion tractography.
    Waugh JL; Kuster JK; Makhlouf ML; Levenstein JM; Multhaupt-Buell TJ; Warfield SK; Sharma N; Blood AJ
    Neuroimage; 2019 Apr; 189():288-306. PubMed ID: 30611874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The SRI24 multichannel atlas of normal adult human brain structure.
    Rohlfing T; Zahr NM; Sullivan EV; Pfefferbaum A
    Hum Brain Mapp; 2010 May; 31(5):798-819. PubMed ID: 20017133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics.
    Jin Y; Shi Y; Zhan L; Gutman BA; de Zubicaray GI; McMahon KL; Wright MJ; Toga AW; Thompson PM
    Neuroimage; 2014 Oct; 100():75-90. PubMed ID: 24821529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Whole-brain mapping of structural connectivity in infants reveals altered connection strength associated with growth and preterm birth.
    Pandit AS; Robinson E; Aljabar P; Ball G; Gousias IS; Wang Z; Hajnal JV; Rueckert D; Counsell SJ; Montana G; Edwards AD
    Cereb Cortex; 2014 Sep; 24(9):2324-33. PubMed ID: 23547135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures.
    Lim IA; Faria AV; Li X; Hsu JT; Airan RD; Mori S; van Zijl PC
    Neuroimage; 2013 Nov; 82():449-69. PubMed ID: 23769915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Longitudinal atlas for normative human brain development and aging over the lifespan using quantitative susceptibility mapping.
    Zhang Y; Wei H; Cronin MJ; He N; Yan F; Liu C
    Neuroimage; 2018 May; 171():176-189. PubMed ID: 29325780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct segmentation of the major white matter tracts in diffusion tensor images.
    Bazin PL; Ye C; Bogovic JA; Shiee N; Reich DS; Prince JL; Pham DL
    Neuroimage; 2011 Sep; 58(2):458-68. PubMed ID: 21718790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A probabilistic atlas of the cerebellar white matter.
    van Baarsen KM; Kleinnijenhuis M; Jbabdi S; Sotiropoulos SN; Grotenhuis JA; van Cappellen van Walsum AM
    Neuroimage; 2016 Jan; 124(Pt A):724-732. PubMed ID: 26385011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic whole brain tract-based analysis using predefined tracts in a diffusion spectrum imaging template and an accurate registration strategy.
    Chen YJ; Lo YC; Hsu YC; Fan CC; Hwang TJ; Liu CM; Chien YL; Hsieh MH; Liu CC; Hwu HG; Tseng WY
    Hum Brain Mapp; 2015 Sep; 36(9):3441-58. PubMed ID: 26046781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age-specific gray and white matter DTI atlas for human brain at 33, 36 and 39 postmenstrual weeks.
    Feng L; Li H; Oishi K; Mishra V; Song L; Peng Q; Ouyang M; Wang J; Slinger M; Jeon T; Lee L; Heyne R; Chalak L; Peng Y; Liu S; Huang H
    Neuroimage; 2019 Jan; 185():685-698. PubMed ID: 29959046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Population-averaged atlas of the macroscale human structural connectome and its network topology.
    Yeh FC; Panesar S; Fernandes D; Meola A; Yoshino M; Fernandez-Miranda JC; Vettel JM; Verstynen T
    Neuroimage; 2018 Sep; 178():57-68. PubMed ID: 29758339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluid intelligence is associated with cortical volume and white matter tract integrity within multiple-demand system across adult lifespan.
    Chen PY; Chen CL; Hsu YC; ; Tseng WI
    Neuroimage; 2020 May; 212():116576. PubMed ID: 32105883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. White matter atlas of the human spinal cord with estimation of partial volume effect.
    Lévy S; Benhamou M; Naaman C; Rainville P; Callot V; Cohen-Adad J
    Neuroimage; 2015 Oct; 119():262-71. PubMed ID: 26099457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neighborhood resolved fiber orientation distributions (NRFOD) in automatic labeling of white matter fiber pathways.
    Ugurlu D; Firat Z; Türe U; Unal G
    Med Image Anal; 2018 May; 46():130-145. PubMed ID: 29523000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic group-wise whole-brain short association fiber bundle labeling based on clustering and cortical surface information.
    Vázquez A; López-López N; Houenou J; Poupon C; Mangin JF; Ladra S; Guevara P
    Biomed Eng Online; 2020 Jun; 19(1):42. PubMed ID: 32493483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robust and efficient linear registration of white-matter fascicles in the space of streamlines.
    Garyfallidis E; Ocegueda O; Wassermann D; Descoteaux M
    Neuroimage; 2015 Aug; 117():124-40. PubMed ID: 25987367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comprehensive atlas of white matter tracts in the chimpanzee.
    Bryant KL; Li L; Eichert N; Mars RB
    PLoS Biol; 2020 Dec; 18(12):e3000971. PubMed ID: 33383575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.