These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29920399)

  • 1. The developing role of transparent surfaces in children's spatial representation.
    Gianni E; De Zorzi L; Lee SA
    Cogn Psychol; 2018 Sep; 105():39-52. PubMed ID: 29920399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does a row of objects comprise a boundary? How children miss the forest for the trees in spatial navigation.
    Mastrogiuseppe M; Gianni E; Lee SA
    Dev Psychol; 2023 Dec; 59(12):2397-2407. PubMed ID: 37824230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing principal- versus medial-axis accounts of global spatial reorientation.
    Bodily KD; Sullens DG; Price SJ; Sturz BR
    J Exp Psychol Anim Learn Cogn; 2018 Apr; 44(2):209-215. PubMed ID: 29461069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Emergence of Cognitive Maps for Spatial Navigation in 7- to 10-Year-Old Children.
    Burles F; Liu I; Hart C; Murias K; Graham SA; Iaria G
    Child Dev; 2020 May; 91(3):e733-e744. PubMed ID: 31286504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Children's use of geometry for reorientation.
    Lee SA; Spelke ES
    Dev Sci; 2008 Sep; 11(5):743-9. PubMed ID: 18801130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of navigational working memory: evidence from 6- to 10-year-old children.
    Piccardi L; Leonzi M; D'Amico S; Marano A; Guariglia C
    Br J Dev Psychol; 2014 Jun; 32(2):205-17. PubMed ID: 24588844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related preference for geometric spatial cues during real-world navigation.
    Bécu M; Sheynikhovich D; Tatur G; Agathos CP; Bologna LL; Sahel JA; Arleo A
    Nat Hum Behav; 2020 Jan; 4(1):88-99. PubMed ID: 31548677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights from children with early focal brain injury: Lessons to be learned from examining STEM-related skills.
    Demir-Lira ÖE; Aktan-Erciyes A; Göksun T
    Dev Psychobiol; 2019 Apr; 61(3):477-490. PubMed ID: 30942517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How directions of route descriptions influence orientation specificity: the contribution of spatial abilities.
    Meneghetti C; Muffato V; Varotto D; De Beni R
    Psychol Res; 2017 Mar; 81(2):445-461. PubMed ID: 26898648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crossing boundaries: Global reorientation following transfer from the inside to the outside of an arena.
    Buckley MG; Holden LJ; Spicer SG; Smith AD; Haselgrove M
    J Exp Psychol Anim Learn Cogn; 2019 Jul; 45(3):322-337. PubMed ID: 31070431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infants learn better from left to right: a directional bias in infants' sequence learning.
    Bulf H; de Hevia MD; Gariboldi V; Macchi Cassia V
    Sci Rep; 2017 May; 7(1):2437. PubMed ID: 28550288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free hand proprioception is well calibrated to verbal estimates of slanted surfaces.
    Shaffer DM; Taylor A
    Atten Percept Psychophys; 2017 Feb; 79(2):691-697. PubMed ID: 27933458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embodied spatial cognition.
    Trafton JG; Harrison AM
    Top Cogn Sci; 2011 Oct; 3(4):686-706. PubMed ID: 25164505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of orientation change during environmental learning on age-related difference in spatial memory.
    Yamamoto N; Fox MJ; Boys E; Ord J
    Behav Brain Res; 2019 Jun; 365():125-132. PubMed ID: 30851314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The developmental trajectory of intramaze and extramaze landmark biases in spatial navigation: An unexpected journey.
    Buckley MG; Haselgrove M; Smith AD
    Dev Psychol; 2015 Jun; 51(6):771-91. PubMed ID: 25844850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial cognition and science achievement: The contribution of intrinsic and extrinsic spatial skills from 7 to 11 years.
    Hodgkiss A; Gilligan KA; Tolmie AK; Thomas MSC; Farran EK
    Br J Educ Psychol; 2018 Dec; 88(4):675-697. PubMed ID: 29359476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introducing a new age-and-cognition-sensitive measurement for assessing spatial orientation using a landmark-less virtual reality navigational task.
    Ranjbar Pouya O; Byagowi A; Kelly DM; Moussavi Z
    Q J Exp Psychol (Hove); 2017 Jul; 70(7):1406-1419. PubMed ID: 27156658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Young Children's Use of Surface and Object Information in Drawings of Everyday Scenes.
    Dillon MR; Spelke ES
    Child Dev; 2017 Sep; 88(5):1701-1715. PubMed ID: 28869664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticipatory control and spatial cognition in locomotion and navigation through typical development and in cerebral palsy.
    Belmonti V; Cioni G; Berthoz A
    Dev Med Child Neurol; 2016 Mar; 58 Suppl 4():22-7. PubMed ID: 27027604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The BEVPS: A new test battery to assess visual perceptual and spatial processing abilities in 5-14 year-old children.
    Schmetz E; Rousselle L; Ballaz C; Detraux JJ; Barisnikov K
    Appl Neuropsychol Child; 2018; 7(4):317-333. PubMed ID: 28632457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.