These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29920399)

  • 21. Boundaries in spatial cognition: Looking like a boundary is more important than being a boundary.
    Negen J; Sandri A; Lee SA; Nardini M
    J Exp Psychol Learn Mem Cogn; 2020 Jun; 46(6):1007-1021. PubMed ID: 31556639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of medial axis for reorientation by the Clark's nutcracker (Nucifraga columbiana).
    Kelly DM; Bisbing TA; Magnotti JF
    Behav Processes; 2019 Jan; 158():192-199. PubMed ID: 30508564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Are allocentric spatial reference frames compatible with theories of Enactivism?
    König SU; Goeke C; Meilinger T; König P
    Psychol Res; 2019 Apr; 83(3):498-513. PubMed ID: 28770385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The shape of human navigation: how environmental geometry is used in maintenance of spatial orientation.
    Kelly JW; McNamara TP; Bodenheimer B; Carr TH; Rieser JJ
    Cognition; 2008 Nov; 109(2):281-6. PubMed ID: 18952206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Why vision is important to how we navigate.
    Ekstrom AD
    Hippocampus; 2015 Jun; 25(6):731-5. PubMed ID: 25800632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is height a core geometric cue for navigation? Young children's use of height in reorientation.
    Hu Q; Zhang J; Wu D; Shao Y
    J Exp Child Psychol; 2015 Feb; 130():123-31. PubMed ID: 25462036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of cue integration in human navigation.
    Nardini M; Jones P; Bedford R; Braddick O
    Curr Biol; 2008 May; 18(9):689-93. PubMed ID: 18450447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Navigation as a source of geometric knowledge: young children's use of length, angle, distance, and direction in a reorientation task.
    Lee SA; Sovrano VA; Spelke ES
    Cognition; 2012 Apr; 123(1):144-61. PubMed ID: 22257573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thinking outside of the box: Transfer of shape-based reorientation across the boundary of an arena.
    Buckley MG; Smith AD; Haselgrove M
    Cogn Psychol; 2016 Jun; 87():53-87. PubMed ID: 27240027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuronal representation of environmental boundaries in egocentric coordinates.
    Hinman JR; Chapman GW; Hasselmo ME
    Nat Commun; 2019 Jun; 10(1):2772. PubMed ID: 31235693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel virtual plus-maze for studying electrophysiological correlates of spatial reorientation.
    Torok A; Kóbor A; Honbolygó F; Baker T
    Neurosci Lett; 2019 Feb; 694():220-224. PubMed ID: 30476567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sex differences and the effect of instruction on reorientation abilities by humans.
    Siemens MN; Kelly DM
    Mem Cognit; 2018 May; 46(4):566-576. PubMed ID: 29282642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Social targets improve body-based and environment-based strategies during spatial navigation.
    Kuehn E; Chen X; Geise P; Oltmer J; Wolbers T
    Exp Brain Res; 2018 Mar; 236(3):755-764. PubMed ID: 29327266
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential Effects of Salient Visual Events on Memory-Guided Attention in Adults and Children.
    Nussenbaum K; Scerif G; Nobre AC
    Child Dev; 2019 Jul; 90(4):1369-1388. PubMed ID: 30295321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence against the Detectability of a Hippocampal Place Code Using Functional Magnetic Resonance Imaging.
    Nolan CR; Vromen JMG; Cheung A; Baumann O
    eNeuro; 2018; 5(4):. PubMed ID: 30225362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transfer of spatial search between environments in human adults and young children (Homo sapiens): implications for representation of local geometry by spatial systems.
    Lew AR; Usherwood B; Fragkioudaki F; Koukoumi V; Smith SP; Austen JM; McGregor A
    Dev Psychobiol; 2014 Apr; 56(3):421-34. PubMed ID: 23532957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Neurocognitive Basis of Spatial Reorientation.
    Julian JB; Keinath AT; Marchette SA; Epstein RA
    Curr Biol; 2018 Sep; 28(17):R1059-R1073. PubMed ID: 30205055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cognitive strategies for locomotor navigation in normal development and cerebral palsy.
    Belmonti V; Fiori S; Guzzetta A; Cioni G; Berthoz A
    Dev Med Child Neurol; 2015 Apr; 57 Suppl 2():31-6. PubMed ID: 25690114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of allocentric spatial memory abilities in children from 18 months to 5 years of age.
    Ribordy F; Jabès A; Banta Lavenex P; Lavenex P
    Cogn Psychol; 2013 Feb; 66(1):1-29. PubMed ID: 23037305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of SNARC and distance effects and their relation to mathematical and visuospatial abilities.
    Gibson LC; Maurer D
    J Exp Child Psychol; 2016 Oct; 150():301-313. PubMed ID: 27376924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.