These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29920805)

  • 1. Redox-Driven Transformation of a Discrete Molecular Cage into an Infinite 3D Coordination Polymer.
    Szalóki G; Krykun S; Croué V; Allain M; Morille Y; Aubriet F; Carré V; Voitenko Z; Goeb S; Sallé M
    Chemistry; 2018 Aug; 24(44):11273-11277. PubMed ID: 29920805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-rich Coordination Receptors Based on Tetrathiafulvalene Derivatives: Controlling the Host-Guest Binding.
    Goeb S; Sallé M
    Acc Chem Res; 2021 Feb; 54(4):1043-1055. PubMed ID: 33528243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable coordination-driven self-assembly: from discrete metallocages to infinite cage-based frameworks.
    Chen L; Chen Q; Wu M; Jiang F; Hong M
    Acc Chem Res; 2015 Feb; 48(2):201-10. PubMed ID: 25517043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible Guest Uptake/Release by Redox-Controlled Assembly/Disassembly of a Coordination Cage.
    Croué V; Goeb S; Szalóki G; Allain M; Sallé M
    Angew Chem Int Ed Engl; 2016 Jan; 55(5):1746-50. PubMed ID: 26693832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cation-Anion Arrangement Patterns in Self-Assembled Pd
    Clever GH; Punt P
    Acc Chem Res; 2017 Sep; 50(9):2233-2243. PubMed ID: 28817257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the size of a redox-active tetrathiafulvalene-based self-assembled ring.
    Bivaud S; Goeb S; Croué V; Allain M; Pop F; Sallé M
    Beilstein J Org Chem; 2015; 11():966-71. PubMed ID: 26124899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible C
    Colomban C; Szalóki G; Allain M; Gómez L; Goeb S; Sallé M; Costas M; Ribas X
    Chemistry; 2017 Mar; 23(13):3016-3022. PubMed ID: 28112436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Self-Assembled Electro-Active M8L4 Cage Based on Tetrathiafulvalene Ligands.
    Goeb S; Bivaud S; Croué V; Vajpayee V; Allain M; Sallé M
    Materials (Basel); 2014 Jan; 7(1):611-622. PubMed ID: 28788478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the Assembly of Metal-Organic Cages into Complex Coordination Networks.
    Yadav A; Gupta AK; Steiner A; Boomishankar R
    Chemistry; 2017 Dec; 23(72):18296-18302. PubMed ID: 29076576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination-driven self-assembly of a discrete molecular cage and an infinite chain of coordination cages based on ortho-linked oxacalix[2]benzene[2]pyrazine and oxacalix[2]arene[2]pyrazine.
    Ma ML; Li XY; Wen K
    J Am Chem Soc; 2009 Jun; 131(24):8338-9. PubMed ID: 19489554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvothermal Subcomponent Self-Assembly of Cubic Metal-Imidazolate Cages and Their Coordination Polymers.
    Luo D; Zhou XP; Li D
    Inorg Chem; 2015 Nov; 54(22):10822-8. PubMed ID: 26513448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutral versus polycationic coordination cages: a comparison regarding neutral guest inclusion.
    Szalóki G; Croué V; Allain M; Goeb S; Sallé M
    Chem Commun (Camb); 2016 Aug; 52(65):10012-5. PubMed ID: 27440274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled conjoined-cages.
    Samantray S; Krishnaswamy S; Chand DK
    Nat Commun; 2020 Feb; 11(1):880. PubMed ID: 32060328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination chemistry of conformation-flexible 1,2,3,4,5,6-cyclohexanehexacarboxylate: trapping various conformations in metal-organic frameworks.
    Wang J; Lin ZJ; Ou YC; Shen Y; Herchel R; Tong ML
    Chemistry; 2008; 14(24):7218-35. PubMed ID: 18618562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diamondoid Supramolecular Coordination Frameworks from Discrete Adamantanoid Platinum(II) Cages.
    Cao L; Wang P; Miao X; Dong Y; Wang H; Duan H; Yu Y; Li X; Stang PJ
    J Am Chem Soc; 2018 Jun; 140(22):7005-7011. PubMed ID: 29746782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of metal-organic supramolecules: from a metallamacrocycle and a metal-organic coordination cage to 1D or 2D coordination polymers based on flexible dicarboxylate ligands.
    Dai F; Dou J; He H; Zhao X; Sun D
    Inorg Chem; 2010 May; 49(9):4117-24. PubMed ID: 20380447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled supramolecular cages containing ruthenium(II) polypyridyl complexes.
    Yang J; Bhadbhade M; Donald WA; Iranmanesh H; Moore EG; Yan H; Beves JE
    Chem Commun (Camb); 2015 Mar; 51(21):4465-8. PubMed ID: 25679952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable Coordination Self-Assembly Based on Flexible Tripodal Ligands: From Finite Metallocages to Infinite Polycatenanes Step by Step.
    Chen Q; Chen L; Jiang F; Hong M
    Chem Rec; 2015 Aug; 15(4):711-27. PubMed ID: 26147708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the Host-Guest Interaction Mode through a Redox Stimulus.
    Szalóki G; Croué V; Carré V; Aubriet F; Alévêque O; Levillain E; Allain M; Aragó J; Ortí E; Goeb S; Sallé M
    Angew Chem Int Ed Engl; 2017 Dec; 56(51):16272-16276. PubMed ID: 29083516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A trigonal prismatic ligand in the metal-mediated self-assembly of one- and two-dimensional metallosupramolecular polymers.
    Hu WJ; Liu LQ; Ma ML; Zhao XL; Liu YA; Mi XQ; Jiang B; Wen K
    Inorg Chem; 2013 Aug; 52(16):9309-19. PubMed ID: 23927581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.