BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 29920827)

  • 1. Ferredoxin/thioredoxin system plays an important role in the chloroplastic NADP status of Arabidopsis.
    Hashida SN; Miyagi A; Nishiyama M; Yoshida K; Hisabori T; Kawai-Yamada M
    Plant J; 2018 Sep; 95(6):947-960. PubMed ID: 29920827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thioredoxin f1 and NADPH-Dependent Thioredoxin Reductase C Have Overlapping Functions in Regulating Photosynthetic Metabolism and Plant Growth in Response to Varying Light Conditions.
    Thormählen I; Meitzel T; Groysman J; Öchsner AB; von Roepenack-Lahaye E; Naranjo B; Cejudo FJ; Geigenberger P
    Plant Physiol; 2015 Nov; 169(3):1766-86. PubMed ID: 26338951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism.
    Vaseghi MJ; Chibani K; Telman W; Liebthal MF; Gerken M; Schnitzer H; Mueller SM; Dietz KJ
    Elife; 2018 Oct; 7():. PubMed ID: 30311601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ferredoxin/thioredoxin pathway constitutes an indispensable redox-signaling cascade for light-dependent reduction of chloroplast stromal proteins.
    Yoshida K; Yokochi Y; Tanaka K; Hisabori T
    J Biol Chem; 2022 Dec; 298(12):102650. PubMed ID: 36448836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The NADPH-Dependent Thioredoxin Reductase C-2-Cys Peroxiredoxin Redox System Modulates the Activity of Thioredoxin x in Arabidopsis Chloroplasts.
    Ojeda V; Pérez-Ruiz JM; Cejudo FJ
    Plant Cell Physiol; 2018 Oct; 59(10):2155-2164. PubMed ID: 30011001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thioredoxins and thioredoxin reductase in chloroplasts: A review.
    Kang Z; Qin T; Zhao Z
    Gene; 2019 Jul; 706():32-42. PubMed ID: 31028868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast redox homeostasis is essential for lateral root formation in Arabidopsis.
    Ferrández J; González M; Cejudo FJ
    Plant Signal Behav; 2012 Sep; 7(9):1177-9. PubMed ID: 22899086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis tic62 trol mutant lacking thylakoid-bound ferredoxin-NADP+ oxidoreductase shows distinct metabolic phenotype.
    Lintala M; Schuck N; Thormählen I; Jungfer A; Weber KL; Weber AP; Geigenberger P; Soll J; Bölter B; Mulo P
    Mol Plant; 2014 Jan; 7(1):45-57. PubMed ID: 24043709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance.
    Carrillo LR; Froehlich JE; Cruz JA; Savage LJ; Kramer DM
    Plant J; 2016 Sep; 87(6):654-63. PubMed ID: 27233821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of NADP-malate dehydrogenase in C4 plants: relationship among enzyme activity, NADPH to NADP ratios, and thioredoxin redox states in intact maize mesophyll chloroplasts.
    Rebeille F; Hatch MD
    Arch Biochem Biophys; 1986 Aug; 249(1):171-9. PubMed ID: 3740850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the reduction systems of plastidial thioredoxins point out the unique properties of thioredoxin z from Arabidopsis.
    Bohrer AS; Massot V; Innocenti G; Reichheld JP; Issakidis-Bourguet E; Vanacker H
    J Exp Bot; 2012 Nov; 63(18):6315-23. PubMed ID: 23096001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox regulation by peroxiredoxins is linked to their thioredoxin-dependent oxidase function.
    Telman W; Liebthal M; Dietz KJ
    Photosynth Res; 2020 Jul; 145(1):31-41. PubMed ID: 31768716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant NADPH-dependent thioredoxin reductases are crucial for the metabolism of sink leaves and plant acclimation to elevated CO
    Souza PVL; Hou LY; Sun H; Poeker L; Lehman M; Bahadar H; Domingues-Junior AP; Dard A; Bariat L; Reichheld JP; Silveira JAG; Fernie AR; Timm S; Geigenberger P; Daloso DM
    Plant Cell Environ; 2023 Aug; 46(8):2337-2357. PubMed ID: 37267089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADPH Thioredoxin Reductase C and Thioredoxins Act Concertedly in Seedling Development.
    Ojeda V; Pérez-Ruiz JM; González M; Nájera VA; Sahrawy M; Serrato AJ; Geigenberger P; Cejudo FJ
    Plant Physiol; 2017 Jul; 174(3):1436-1448. PubMed ID: 28500266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts.
    Pulido P; Spínola MC; Kirchsteiger K; Guinea M; Pascual MB; Sahrawy M; Sandalio LM; Dietz KJ; González M; Cejudo FJ
    J Exp Bot; 2010 Sep; 61(14):4043-54. PubMed ID: 20616155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative analysis of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system from plants and cyanobacteria.
    Pascual MB; Mata-Cabana A; Florencio FJ; Lindahl M; Cejudo FJ
    Plant Physiol; 2011 Apr; 155(4):1806-16. PubMed ID: 21335525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability.
    Yoshida K; Hisabori T
    Proc Natl Acad Sci U S A; 2016 Jul; 113(27):E3967-76. PubMed ID: 27335455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADP+ supply adjusts the synthesis of photosystem I in Arabidopsis chloroplasts.
    Ji D; Li Q; Guo Y; An W; Manavski N; Meurer J; Chi W
    Plant Physiol; 2022 Aug; 189(4):2128-2143. PubMed ID: 35385122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrasting modes of photosynthetic enzyme regulation in oxygenic and anoxygenic prokaryotes.
    Crawford NA; Sutton CW; Yee BC; Johnson TC; Carlson DC; Buchanan BB
    Arch Microbiol; 1984 Oct; 139(2-3):124-9. PubMed ID: 11536590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferredoxin:NADP(H) Oxidoreductase Abundance and Location Influences Redox Poise and Stress Tolerance.
    Kozuleva M; Goss T; Twachtmann M; Rudi K; Trapka J; Selinski J; Ivanov B; Garapati P; Steinhoff HJ; Hase T; Scheibe R; Klare JP; Hanke GT
    Plant Physiol; 2016 Nov; 172(3):1480-1493. PubMed ID: 27634426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.