BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29920889)

  • 41. Conversion of rice husk ash to zeolite beta.
    Prasetyoko D; Ramli Z; Endud S; Hamdan H; Sulikowski B
    Waste Manag; 2006; 26(10):1173-9. PubMed ID: 16274981
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Zeolite-supported metal complexes of rhodium and of ruthenium: a general synthesis method influenced by molecular sieving effects.
    Ogino I; Chen CY; Gates BC
    Dalton Trans; 2010 Sep; 39(36):8423-31. PubMed ID: 20454735
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Observing a Zeolite Nucleus (Subcrystal) with a Uniform Framework Structure and Its Oriented Attachment without Single-Molecule Addition.
    Sheng Z; Li H; Du K; Gao L; Ju J; Zhang Y; Tang Y
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13444-13451. PubMed ID: 33835648
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis Strategies for Ultrastable Zeolite GIS Polymorphs as Sorbents for Selective Separations.
    Oleksiak MD; Ghorbanpour A; Conato MT; McGrail BP; Grabow LC; Motkuri RK; Rimer JD
    Chemistry; 2016 Nov; 22(45):16078-16088. PubMed ID: 27588557
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of zeolite precursor on the formation of MCM-41 molecular sieve containing zeolite Y building units.
    Li P; Liu L; Xiong G
    Phys Chem Chem Phys; 2011 Jun; 13(23):11248-53. PubMed ID: 21547320
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Zeolite Beta Formation from Clear Sols: Silicate Speciation, Particle Formation and Crystallization Monitored by Complementary Analysis Methods.
    Castro M; Haouas M; Lim I; Bongard HJ; Schüth F; Taulelle F; Karlsson G; Alfredsson V; Breyneart E; Kirschhock CE; Schmidt W
    Chemistry; 2016 Oct; 22(43):15307-15319. PubMed ID: 27603448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Early stage reversed crystal growth of zeolite A and its phase transformation to sodalite.
    Greer H; Wheatley PS; Ashbrook SE; Morris RE; Zhou W
    J Am Chem Soc; 2009 Dec; 131(49):17986-92. PubMed ID: 19919054
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Organic-Free Interzeolite Transformation in the Absence of Common Building Units.
    Qin W; Jain R; Robles Hernández FC; Rimer JD
    Chemistry; 2019 Apr; 25(23):5893-5898. PubMed ID: 30854711
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new approach to the determination of atomic-architecture of amorphous zeolite precursors by high-energy X-ray diffraction technique.
    Wakihara T; Kohara S; Sankar G; Saito S; Sanchez-Sanchez M; Overweg AR; Fan W; Ogura M; Okubo T
    Phys Chem Chem Phys; 2006 Jan; 8(2):224-7. PubMed ID: 16482264
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Silanol-Engineered Nonclassical Growth of Zeolite Nanosheets from Oriented Attachment of Amorphous Protozeolite Nanoparticles.
    Zhang Q; Li J; Wang X; He G; Li L; Xu J; Mei D; Terasaki O; Yu J
    J Am Chem Soc; 2023 Oct; 145(39):21231-21241. PubMed ID: 37748094
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microwave synthesis of metallosilicate zeolites with fibrous morphology.
    Hwang YK; Jin T; Kim JM; Kwon YU; Park SE; Chang JS
    J Nanosci Nanotechnol; 2006 Jun; 6(6):1786-91. PubMed ID: 17025084
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In situ SAXS/WAXS of zeolite microwave synthesis: NaY, NaA, and beta zeolites.
    Panzarella B; Tompsett G; Conner WC; Jones K
    Chemphyschem; 2007 Feb; 8(3):357-69. PubMed ID: 17253593
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanosized microporous crystals: emerging applications.
    Mintova S; Jaber M; Valtchev V
    Chem Soc Rev; 2015 Oct; 44(20):7207-33. PubMed ID: 25983108
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Facile high-yield solvothermal deposition of inorganic nanostructures on zeolite crystals for mixed matrix membrane fabrication.
    Bae TH; Liu J; Lee JS; Koros WJ; Jones CW; Nair S
    J Am Chem Soc; 2009 Oct; 131(41):14662-3. PubMed ID: 19788182
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nonclassical crystallization in vivo et in vitro (II): Nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism.
    Rodríguez-Navarro C; Ruiz-Agudo E; Harris J; Wolf SE
    J Struct Biol; 2016 Nov; 196(2):260-287. PubMed ID: 27620641
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Formation pathway for LTA zeolite crystals synthesized via a charge density mismatch approach.
    Park MB; Lee Y; Zheng A; Xiao FS; Nicholas CP; Lewis GJ; Hong SB
    J Am Chem Soc; 2013 Feb; 135(6):2248-55. PubMed ID: 23186175
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of the mechanism of colloidal silicalite-1 crystallization by using DLS, SAXS, and 29Si NMR spectroscopy.
    Aerts A; Haouas M; Caremans TP; Follens LR; van Erp TS; Taulelle F; Vermant J; Martens JA; Kirschhock CE
    Chemistry; 2010 Mar; 16(9):2764-74. PubMed ID: 20077442
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rediscovery of the Importance of Inorganic Synthesis Parameters in the Search for New Zeolites.
    Shin J; Jo D; Hong SB
    Acc Chem Res; 2019 May; 52(5):1419-1427. PubMed ID: 31013053
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemical Crosslinking Assembly of ZSM-5 Nanozeolites into Uniform and Hierarchically Porous Microparticles for High-Performance Acid Catalysis.
    Shang C; Wu Z; Wu WD; Chen XD
    ACS Appl Mater Interfaces; 2019 May; 11(18):16693-16703. PubMed ID: 30983328
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spherical Binderless 4A/5A Zeolite Assemblies: Synthesis, Characterization, and Adsorbent Applications.
    Li T; Wang S; Gao J; Wang R; Gao G; Ren G; Na S; Hong M; Yang S
    Molecules; 2024 Mar; 29(7):. PubMed ID: 38611712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.