These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 29920901)
1. Competition between H and CO for Active Sites Governs Copper-Mediated Electrosynthesis of Hydrocarbon Fuels. Schreier M; Yoon Y; Jackson MN; Surendranath Y Angew Chem Int Ed Engl; 2018 Aug; 57(32):10221-10225. PubMed ID: 29920901 [TBL] [Abstract][Full Text] [Related]
2. Systematic Analysis of Electrochemical CO₂ Reduction with Various Reaction Parameters using Combinatorial Reactors. Hashiba H; Yotsuhashi S; Deguchi M; Yamada Y ACS Comb Sci; 2016 Apr; 18(4):203-8. PubMed ID: 27003626 [TBL] [Abstract][Full Text] [Related]
3. Oxygen Functionalized Copper Nanoparticles for Solar-Driven Conversion of Carbon Dioxide to Methane. Esmaeilirad M; Kondori A; Song B; Ruiz Belmonte A; Wei J; Kucuk K; Khanvilkar SM; Efimoff E; Chen W; Segre CU; Shahbazian-Yassar R; Asadi M ACS Nano; 2020 Feb; 14(2):2099-2108. PubMed ID: 31971779 [TBL] [Abstract][Full Text] [Related]
4. High throughput screening of M Xiao Y; Zhang W Nanoscale; 2020 Apr; 12(14):7660-7673. PubMed ID: 32236195 [TBL] [Abstract][Full Text] [Related]
5. Tracking a Common Surface-Bound Intermediate during CO2-to-Fuels Catalysis. Wuttig A; Liu C; Peng Q; Yaguchi M; Hendon CH; Motobayashi K; Ye S; Osawa M; Surendranath Y ACS Cent Sci; 2016 Aug; 2(8):522-8. PubMed ID: 27610413 [TBL] [Abstract][Full Text] [Related]
6. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Varghese OK; Paulose M; Latempa TJ; Grimes CA Nano Lett; 2009 Feb; 9(2):731-7. PubMed ID: 19173633 [TBL] [Abstract][Full Text] [Related]
7. The effects of power ultrasound (24 kHz) on the electrochemical reduction of CO Islam MH; Mehrabi H; Coridan RH; Burheim OS; Hihn JY; Pollet BG Ultrason Sonochem; 2021 Apr; 72():105401. PubMed ID: 33341073 [TBL] [Abstract][Full Text] [Related]
8. Controllable CO adsorption determines ethylene and methane productions from CO Bai H; Cheng T; Li S; Zhou Z; Yang H; Li J; Xie M; Ye J; Ji Y; Li Y; Zhou Z; Sun S; Zhang B; Peng H Sci Bull (Beijing); 2021 Jan; 66(1):62-68. PubMed ID: 36654315 [TBL] [Abstract][Full Text] [Related]
9. Lattice Engineering on Metal Cocatalysts for Enhanced Photocatalytic Reduction of CO Zhao L; Ye F; Wang D; Cai X; Meng C; Xie H; Zhang J; Bai S ChemSusChem; 2018 Oct; 11(19):3524-3533. PubMed ID: 30030919 [TBL] [Abstract][Full Text] [Related]
10. Reactivity Determinants in Electrodeposited Cu Foams for Electrochemical CO Klingan K; Kottakkat T; Jovanov ZP; Jiang S; Pasquini C; Scholten F; Kubella P; Bergmann A; Roldan Cuenya B; Roth C; Dau H ChemSusChem; 2018 Oct; 11(19):3449-3459. PubMed ID: 30160827 [TBL] [Abstract][Full Text] [Related]
11. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Wuttig A; Yaguchi M; Motobayashi K; Osawa M; Surendranath Y Proc Natl Acad Sci U S A; 2016 Aug; 113(32):E4585-93. PubMed ID: 27450088 [TBL] [Abstract][Full Text] [Related]
12. Controlling the Oxidation State of the Cu Electrode and Reaction Intermediates for Electrochemical CO Chou TC; Chang CC; Yu HL; Yu WY; Dong CL; Velasco-Vélez JJ; Chuang CH; Chen LC; Lee JF; Chen JM; Wu HL J Am Chem Soc; 2020 Feb; 142(6):2857-2867. PubMed ID: 31955572 [TBL] [Abstract][Full Text] [Related]
13. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Rakowski DuBois M; DuBois DL Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445 [TBL] [Abstract][Full Text] [Related]
14. Enhanced Electrochemical Methanation of Carbon Dioxide at the Single-Layer Hexagonal Boron Nitride/Cu Interfacial Perimeter. Chen S; Zhu C; Gu H; Wang L; Qi J; Zhong L; Zhang Z; Yang C; Shi G; Zhao S; Li S; Liu K; Zhang L Nano Lett; 2021 May; 21(10):4469-4476. PubMed ID: 33978428 [TBL] [Abstract][Full Text] [Related]
15. A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials. Choi C; Cheng T; Flores Espinosa M; Fei H; Duan X; Goddard WA; Huang Y Adv Mater; 2019 Feb; 31(6):e1805405. PubMed ID: 30549121 [TBL] [Abstract][Full Text] [Related]
16. Copper adparticle enabled selective electrosynthesis of n-propanol. Li J; Che F; Pang Y; Zou C; Howe JY; Burdyny T; Edwards JP; Wang Y; Li F; Wang Z; De Luna P; Dinh CT; Zhuang TT; Saidaminov MI; Cheng S; Wu T; Finfrock YZ; Ma L; Hsieh SH; Liu YS; Botton GA; Pong WF; Du X; Guo J; Sham TK; Sargent EH; Sinton D Nat Commun; 2018 Nov; 9(1):4614. PubMed ID: 30397203 [TBL] [Abstract][Full Text] [Related]
17. Competition of CO and Acetaldehyde Adsorption and Reduction on Copper Electrodes and Its Impact on da Silva AHM; Lenne Q; Vos RE; Koper MTM ACS Catal; 2023 Apr; 13(7):4339-4347. PubMed ID: 37066043 [TBL] [Abstract][Full Text] [Related]
18. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion. Costentin C; Robert M; Savéant JM Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053 [TBL] [Abstract][Full Text] [Related]
19. Carbon dioxide conversion into hydrocarbon fuels on defective graphene-supported Cu nanoparticles from first principles. Lim DH; Jo JH; Shin DY; Wilcox J; Ham HC; Nam SW Nanoscale; 2014 May; 6(10):5087-92. PubMed ID: 24695587 [TBL] [Abstract][Full Text] [Related]
20. Selectivity Map for the Late Stages of CO and CO Piqué O; Low QH; Handoko AD; Yeo BS; Calle-Vallejo F Angew Chem Int Ed Engl; 2021 May; 60(19):10784-10790. PubMed ID: 33527641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]