These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 29920950)

  • 21. A sex difference in circadian food-anticipatory rhythms in mice: Interaction with dopamine D1 receptor knockout.
    Michalik M; Steele AD; Mistlberger RE
    Behav Neurosci; 2015 Jun; 129(3):351-60. PubMed ID: 26030433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice.
    Gallardo CM; Darvas M; Oviatt M; Chang CH; Michalik M; Huddy TF; Meyer EE; Shuster SA; Aguayo A; Hill EM; Kiani K; Ikpeazu J; Martinez JS; Purpura M; Smit AN; Patton DF; Mistlberger RE; Palmiter RD; Steele AD
    Elife; 2014 Sep; 3():e03781. PubMed ID: 25217530
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feeding-entrained circadian rhythms in hypophysectomized rats with suprachiasmatic nucleus lesions.
    Davidson AJ; Stephan FK
    Am J Physiol; 1999 Nov; 277(5):R1376-84. PubMed ID: 10564210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Food-entrained circadian rhythms in rats are insensitive to deuterium oxide.
    Mistlberger RE; Marchant EG; Kippin TE
    Brain Res; 2001 Nov; 919(2):283-91. PubMed ID: 11701140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid damping of food-entrained circadian rhythm of clock gene expression in clock-defective peripheral tissues under fasting conditions.
    Horikawa K; Minami Y; Iijima M; Akiyama M; Shibata S
    Neuroscience; 2005; 134(1):335-43. PubMed ID: 15961241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lack of food anticipation in Per2 mutant mice.
    Feillet CA; Ripperger JA; Magnone MC; Dulloo A; Albrecht U; Challet E
    Curr Biol; 2006 Oct; 16(20):2016-22. PubMed ID: 17055980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. "Feeding time" for the brain: a matter of clocks.
    Feillet CA; Albrecht U; Challet E
    J Physiol Paris; 2006; 100(5-6):252-60. PubMed ID: 17629684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variable restricted feeding disrupts the daily oscillations of Period2 expression in the limbic forebrain and dorsal striatum in rats.
    Verwey M; Amir S
    J Mol Neurosci; 2012 Feb; 46(2):258-64. PubMed ID: 21547532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light.
    Nováková M; Polidarová L; Sládek M; Sumová A
    Neuroscience; 2011 Dec; 197():65-71. PubMed ID: 21952132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Food-entrainable circadian oscillators in the brain.
    Verwey M; Amir S
    Eur J Neurosci; 2009 Nov; 30(9):1650-7. PubMed ID: 19863660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circadian rhythms: perturbing a food-entrained clock.
    Mistlberger RE
    Curr Biol; 2006 Nov; 16(22):R968-9. PubMed ID: 17113381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase shifts of circadian rhythms in activity entrained to food access.
    Stephan FK
    Physiol Behav; 1984 Apr; 32(4):663-71. PubMed ID: 6484015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peripheral oscillators: the driving force for food-anticipatory activity.
    Escobar C; Cailotto C; Angeles-Castellanos M; Delgado RS; Buijs RM
    Eur J Neurosci; 2009 Nov; 30(9):1665-75. PubMed ID: 19878276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurogenetics of food anticipation.
    Challet E; Mendoza J; Dardente H; Pévet P
    Eur J Neurosci; 2009 Nov; 30(9):1676-87. PubMed ID: 19863658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anticipatory activity and entrainment of circadian rhythms in Syrian hamsters exposed to restricted palatable diets.
    Abe H; Rusak B
    Am J Physiol; 1992 Jul; 263(1 Pt 2):R116-24. PubMed ID: 1636778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Food-entrained feeding and locomotor circadian rhythms in rats under different lighting conditions.
    Lax P; Zamora S; Madrid JA
    Chronobiol Int; 1999 May; 16(3):281-91. PubMed ID: 10373098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Secretin receptor-deficient mice exhibit robust food anticipatory activity.
    Sugiyama M; Nishijima I; Nakamura W; Nakamura TJ
    Neurosci Lett; 2022 Feb; 772():136462. PubMed ID: 35051436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of light, food, and methamphetamine on the circadian activity rhythm in mice.
    Pendergast JS; Yamazaki S
    Physiol Behav; 2014 Apr; 128():92-8. PubMed ID: 24530262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata).
    Vera LM; Negrini P; Zagatti C; Frigato E; Sánchez-Vázquez FJ; Bertolucci C
    Chronobiol Int; 2013 Jun; 30(5):649-61. PubMed ID: 23688119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase shifts in circadian peripheral clocks caused by exercise are dependent on the feeding schedule in PER2::LUC mice.
    Sasaki H; Hattori Y; Ikeda Y; Kamagata M; Iwami S; Yasuda S; Shibata S
    Chronobiol Int; 2016; 33(7):849-62. PubMed ID: 27123825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.