BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29920959)

  • 1. Label-free volumetric imaging of conjunctival collecting lymphatics ex vivo by optical coherence tomography lymphangiography.
    Gong P; Yu DY; Wang Q; Yu PK; Karnowski K; Heisler M; Francke A; An D; Sarunic MV; Sampson DD
    J Biophotonics; 2018 Aug; 11(8):e201800070. PubMed ID: 29920959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based label-free imaging of lymphatics and aqueous veins in the eye using optical coherence tomography.
    Gong P; Tang X; Chen J; You H; Wang Y; Yu PK; Yu DY; Cense B
    Sci Rep; 2024 Mar; 14(1):6126. PubMed ID: 38480842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lymphatic response to depilation-induced inflammation in mouse ear assessed with label-free optical lymphangiography.
    Qin W; Baran U; Wang R
    Lasers Surg Med; 2015 Oct; 47(8):669-76. PubMed ID: 26224650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lymph vessels visualization from optical coherence tomography data using depth-resolved attenuation coefficient calculation.
    Moiseev AA; Sirotkina MA; Potapov AL; Matveev LA; Vagapova NN; Kuznetsova IA; Gladkova ND
    J Biophotonics; 2021 Sep; 14(9):e202100055. PubMed ID: 34057296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters.
    Yousefi S; Qin J; Zhi Z; Wang RK
    J Biomed Opt; 2013 Aug; 18(8):86004. PubMed ID: 23922124
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Gong P; Es'haghian S; Harms KA; Murray A; Rea S; Wood FM; Sampson DD; McLaughlin RA
    Biomed Opt Express; 2016 Dec; 7(12):4886-4898. PubMed ID: 28018713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OCT-based label-free in vivo lymphangiography within human skin and areola.
    Baran U; Qin W; Qi X; Kalkan G; Wang RK
    Sci Rep; 2016 Feb; 6():21122. PubMed ID: 26892830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anterior Segment Optical Coherence Tomography Angiography Imaging of Conjunctiva and Intrasclera in Treated Primary Open-Angle Glaucoma.
    Akagi T; Uji A; Okamoto Y; Suda K; Kameda T; Nakanishi H; Ikeda HO; Miyake M; Nakano E; Motozawa N; Tsujikawa A
    Am J Ophthalmol; 2019 Dec; 208():313-322. PubMed ID: 31102577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and differentiation of semi-transparent materials simulating biological structures using optical coherence tomography: a phantom study.
    Qureshi MM; Allam N; Peters T; Demidov V; Vitkin A
    J Biomed Opt; 2022 Oct; 27(10):. PubMed ID: 36221173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging.
    Yamanaka M; Teranishi T; Kawagoe H; Nishizawa N
    Sci Rep; 2016 Aug; 6():31715. PubMed ID: 27546517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoacoustic lymphangiography.
    Kajita H; Oh A; Urano M; Takemaru M; Imanishi N; Otaki M; Yagi T; Aiso S; Kishi K
    J Surg Oncol; 2020 Jan; 121(1):48-50. PubMed ID: 31165483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free 3D imaging of microstructure, blood, and lymphatic vessels within tissue beds in vivo.
    Zhi Z; Jung Y; Wang RK
    Opt Lett; 2012 Mar; 37(5):812-4. PubMed ID: 22378402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lymphatic vessels of the eye - old questions - new insights.
    Grüntzig J; Hollmann F
    Ann Anat; 2019 Jan; 221():1-16. PubMed ID: 30240907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pilot study to image the vascular network of small melanocytic choroidal tumors with speckle noise-free 1050-nm swept source optical coherence tomography (OCT choroidal angiography).
    Maloca P; Gyger C; Hasler PW
    Graefes Arch Clin Exp Ophthalmol; 2016 Jun; 254(6):1201-10. PubMed ID: 26847040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative study of the topographic distribution of conjunctival lymphatic vessels in the monkey.
    Guo W; Zhu Y; Yu PK; Yu X; Sun X; Cringle SJ; Su EN; Yu DY
    Exp Eye Res; 2012 Jan; 94(1):90-7. PubMed ID: 22138558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo cross-sectional observation and thickness measurement of bulbar conjunctiva using optical coherence tomography.
    Zhang X; Li Q; Liu B; Zhou H; Wang H; Zhang Z; Xiang M; Han Z; Zou H
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7787-91. PubMed ID: 21873655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional, structural, and molecular identification of lymphatic outflow from subconjunctival blebs.
    Akiyama G; Saraswathy S; Bogarin T; Pan X; Barron E; Wong TT; Kaneko MK; Kato Y; Hong Y; Huang AS
    Exp Eye Res; 2020 Jul; 196():108049. PubMed ID: 32387381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scleral and conjunctival features in patients with rhegmatogenous retinal detachment undergoing scleral buckling: an anterior segment optical coherence tomography and in vivo confocal microscopy study.
    Carpineto P; Agnifili L; Senatore A; Agbeanda AG; Lappa A; Borrelli E; Di Martino G; Oddone F; Mastropasqua R
    Acta Ophthalmol; 2019 Dec; 97(8):e1069-e1076. PubMed ID: 31125179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues.
    Zhou C; Cohen DW; Wang Y; Lee HC; Mondelblatt AE; Tsai TH; Aguirre AD; Fujimoto JG; Connolly JL
    Cancer Res; 2010 Dec; 70(24):10071-9. PubMed ID: 21056988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanorods as a contrast agent for Doppler optical coherence tomography.
    Wang B; Kagemann L; Schuman JS; Ishikawa H; Bilonick RA; Ling Y; Sigal IA; Nadler Z; Francis A; Sandrian MG; Wollstein G
    PLoS One; 2014; 9(3):e90690. PubMed ID: 24595044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.