These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29921127)

  • 1. Effects of Vacancy Defects on the Electronic and Optical Properties of Monolayer PbSe.
    Ekuma CE
    J Phys Chem Lett; 2018 Jul; 9(13):3680-3685. PubMed ID: 29921127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fingerprints of native defects in monolayer PbTe.
    Ekuma CE
    Nanoscale Adv; 2019 Feb; 1(2):513-521. PubMed ID: 36132243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunability in the optical response of defective monolayer WSe
    Jiang J; Pachter R; Mou S
    Nanoscale; 2018 Jul; 10(28):13751-13760. PubMed ID: 29993082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defect evolution behaviors from single sulfur point vacancies to line vacancies in monolayer molybdenum disulfide.
    Gao C; Yang X; Jiang M; Chen L; Chen Z; Singh CV
    Phys Chem Chem Phys; 2021 Sep; 23(35):19525-19536. PubMed ID: 34524293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe2-x Crystals.
    Mahjouri-Samani M; Liang L; Oyedele A; Kim YS; Tian M; Cross N; Wang K; Lin MW; Boulesbaa A; Rouleau CM; Puretzky AA; Xiao K; Yoon M; Eres G; Duscher G; Sumpter BG; Geohegan DB
    Nano Lett; 2016 Aug; 16(8):5213-20. PubMed ID: 27416103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic vacancy defects and mechanical strain for the modulation of the mechanical, electronic and optical properties of monolayer tungsten disulfide.
    Gao C; Yang X; Jiang M; Chen L; Chen Z; Singh CV
    Phys Chem Chem Phys; 2021 Mar; 23(10):6298-6308. PubMed ID: 33688866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring the optical properties of atomically-thin WS
    Ma L; Tan Y; Ghorbani-Asl M; Boettger R; Kretschmer S; Zhou S; Huang Z; Krasheninnikov AV; Chen F
    Nanoscale; 2017 Aug; 9(31):11027-11034. PubMed ID: 28660978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning electronic and optical properties of monolayer PdSe
    Zhao XW; Yang Z; Guo JT; Hu GC; Yue WW; Yuan XB; Ren JF
    Sci Rep; 2020 Mar; 10(1):4028. PubMed ID: 32132623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of point defects in PbS, PbSe and PbTe: a first principles study.
    Li WF; Fang CM; Dijkstra M; van Huis MA
    J Phys Condens Matter; 2015 Sep; 27(35):355801. PubMed ID: 26290521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of vacancies on the structural and electronic properties of Ti
    Xiao-Hong L; Xiang-Ying S; Rui-Zhou Z
    RSC Adv; 2019 Aug; 9(47):27646-27651. PubMed ID: 35529181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defect-Tolerant Monolayer Transition Metal Dichalcogenides.
    Pandey M; Rasmussen FA; Kuhar K; Olsen T; Jacobsen KW; Thygesen KS
    Nano Lett; 2016 Apr; 16(4):2234-9. PubMed ID: 27027786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-Triggered Sulfur Vacancy Evolution in Monolayer MoS
    Liu M; Shi J; Li Y; Zhou X; Ma D; Qi Y; Zhang Y; Liu Z
    Small; 2017 Oct; 13(40):. PubMed ID: 28799711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Electronic Properties of O-Doped Pure and Sulfur Vacancy-Defect Monolayer WS₂: A First-Principles Study.
    Wang W; Bai L; Yang C; Fan K; Xie Y; Li M
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29385028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, Stability, and Kinetics of Vacancy Defects in Monolayer PtSe
    Gao J; Cheng Y; Tian T; Hu X; Zeng K; Zhang G; Zhang YW
    ACS Omega; 2017 Dec; 2(12):8640-8648. PubMed ID: 31457396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electronic and optical properties of the sulvanite compounds: a many-body perturbation and time-dependent density functional theory study.
    Espinosa-García WF; Pérez-Walton S; Osorio-Guillén JM; Moyses Araujo C
    J Phys Condens Matter; 2018 Jan; 30(3):035502. PubMed ID: 29182517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-Principles Calculations of the Electronic Structure and Optical Properties of Yttrium-Doped ZnO Monolayer with Vacancy.
    Wu Q; Wang P; Liu Y; Yang H; Cheng J; Guo L; Yang Y; Zhang Z
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen deficient centers in silica: optical properties within many-body perturbation theory.
    Richard N; Martin-Samos L; Girard S; Ruini A; Boukenter A; Ouerdane Y; Meunier JP
    J Phys Condens Matter; 2013 Aug; 25(33):335502. PubMed ID: 23877003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction between vacancy defects in gallium sulfide monolayer and a new vacancy defect model.
    Zhang T; Liang Y; Guo H; Zhang TC; Fan H; Tian X
    Phys Chem Chem Phys; 2021 Jun; 23(24):13623-13632. PubMed ID: 34115084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defect-Induced Modification of Low-Lying Excitons and Valley Selectivity in Monolayer Transition Metal Dichalcogenides.
    Refaely-Abramson S; Qiu DY; Louie SG; Neaton JB
    Phys Rev Lett; 2018 Oct; 121(16):167402. PubMed ID: 30387666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.