These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 29921352)

  • 41. Effects of sleep deprivation on human postural control, subjective fatigue assessment and psychomotor performance.
    Ma J; Yao YJ; Ma RM; Li JQ; Wang T; Li XJ; Han WQ; Hu WD; Zhang ZM
    J Int Med Res; 2009; 37(5):1311-20. PubMed ID: 19930836
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of eye metrics as a detector of fatigue.
    McKinley RA; McIntire LK; Schmidt R; Repperger DW; Caldwell JA
    Hum Factors; 2011 Aug; 53(4):403-14. PubMed ID: 21901937
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Equivalence Testing as a Tool for Fatigue Risk Management in Aviation.
    Wu LJ; Gander PH; van den Berg M; Signal TL
    Aerosp Med Hum Perform; 2018 Apr; 89(4):383-388. PubMed ID: 29562969
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stimulant Use as a Fatigue Countermeasure in Aviation.
    Ehlert AM; Wilson PB
    Aerosp Med Hum Perform; 2021 Mar; 92(3):190-200. PubMed ID: 33754977
    [No Abstract]   [Full Text] [Related]  

  • 45. Fatigue on the flight deck: the consequences of sleep loss and the benefits of napping.
    Hartzler BM
    Accid Anal Prev; 2014 Jan; 62():309-18. PubMed ID: 24215936
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pilot fatigue: relationships with departure and arrival times, flight duration, and direction.
    Gander PH; Mulrine HM; van den Berg MJ; Smith AA; Signal TL; Wu LJ; Belenky G
    Aviat Space Environ Med; 2014 Aug; 85(8):833-40. PubMed ID: 25199126
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Operational assessment of the 5-h on/10-h off watchstanding schedule on a US Navy ship: sleep patterns, mood and psychomotor vigilance performance of crewmembers in the nuclear reactor department.
    Shattuck NL; Matsangas P
    Ergonomics; 2016 May; 59(5):657-64. PubMed ID: 26360772
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impact of layover length on sleep, subjective fatigue levels, and sustained attention of long-haul airline pilots.
    Roach GD; Petrilli RM; Dawson D; Lamond N
    Chronobiol Int; 2012 Jun; 29(5):580-6. PubMed ID: 22621354
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of Napping on Alertness, Cognitive, and Physical Outcomes of Karate Athletes.
    Daaloul H; Souissi N; Davenne D
    Med Sci Sports Exerc; 2019 Feb; 51(2):338-345. PubMed ID: 30239491
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of sleep deprivation on cognition.
    Killgore WD
    Prog Brain Res; 2010; 185():105-29. PubMed ID: 21075236
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Do short international layovers allow sufficient opportunity for pilots to recover?
    Lamond N; Petrilli RM; Dawson D; Roach GD
    Chronobiol Int; 2006; 23(6):1285-94. PubMed ID: 17190713
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of split sleep schedules (6h-on/6h-off) on neurobehavioural performance, sleep and sleepiness.
    Short MA; Centofanti S; Hilditch C; Banks S; Lushington K; Dorrian J
    Appl Ergon; 2016 May; 54():72-82. PubMed ID: 26851466
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aircrew Fatigue Perceptions, Fatigue Mitigation Strategies, and Circadian Typology.
    Morris MB; Howland JP; Amaddio KM; Gunzelmann G
    Aerosp Med Hum Perform; 2020 Apr; 91(4):363-368. PubMed ID: 32493560
    [No Abstract]   [Full Text] [Related]  

  • 54. Human performance under sustained operations and acute sleep deprivation conditions: toward a model of controlled attention.
    Pilcher JJ; Band D; Odle-Dusseau HN; Muth ER
    Aviat Space Environ Med; 2007 May; 78(5 Suppl):B15-24. PubMed ID: 17547301
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acute Mild Hypoxic Hypoxia Effects on Cognitive and Simulated Aircraft Pilot Performance.
    Bouak F; Vartanian O; Hofer K; Cheung B
    Aerosp Med Hum Perform; 2018 Jun; 89(6):526-535. PubMed ID: 29789086
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Decreased salivary alpha-amylase levels are associated with performance deficits during sleep loss.
    Pajcin M; Banks S; White JM; Dorrian J; Paech GM; Grant C; Johnson K; Tooley K; Fidock J; Kamimori GH; Della Vedova CB
    Psychoneuroendocrinology; 2017 Apr; 78():131-141. PubMed ID: 28196342
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inter- and intra-individual variability in performance near the circadian nadir during sleep deprivation.
    Frey DJ; Badia P; Wright KP
    J Sleep Res; 2004 Dec; 13(4):305-15. PubMed ID: 15560765
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Decreased prefrontal connectivity parallels cognitive fatigue-related performance decline after sleep deprivation. An optical imaging study.
    Borragán G; Guerrero-Mosquera C; Guillaume C; Slama H; Peigneux P
    Biol Psychol; 2019 May; 144():115-124. PubMed ID: 30930071
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Insights into behavioral vulnerability to differential sleep pressure and circadian phase from a functional ADA polymorphism.
    Reichert CF; Maire M; Gabel V; Viola AU; Kolodyazhniy V; Strobel W; Götz T; Bachmann V; Landolt HP; Cajochen C; Schmidt C
    J Biol Rhythms; 2014 Apr; 29(2):119-30. PubMed ID: 24682206
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving daytime sleep with temazepam as a countermeasure for shift lag.
    Caldwell JL; Prazinko BF; Rowe T; Norman D; Hall KK; Caldwell JA
    Aviat Space Environ Med; 2003 Feb; 74(2):153-63. PubMed ID: 12602447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.