These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 29921465)
1. Fatigue lifetime prediction of a reduced-diameter dental implant system: Numerical and experimental study. Duan Y; Gonzalez JA; Kulkarni PA; Nagy WW; Griggs JA Dent Mater; 2018 Sep; 34(9):1299-1309. PubMed ID: 29921465 [TBL] [Abstract][Full Text] [Related]
2. Effect of loading frequency on cyclic fatigue lifetime of a standard-diameter implant with an internal abutment connection. Duan Y; Griggs JA Dent Mater; 2018 Dec; 34(12):1711-1716. PubMed ID: 30220505 [TBL] [Abstract][Full Text] [Related]
3. Influence of loading frequency on implant failure under cyclic fatigue conditions. Karl M; Kelly JR Dent Mater; 2009 Nov; 25(11):1426-32. PubMed ID: 19643468 [TBL] [Abstract][Full Text] [Related]
4. In vitro fatigue tests and in silico finite element analysis of dental implants with different fixture/abutment joint types using computer-aided design models. Yamaguchi S; Yamanishi Y; Machado LS; Matsumoto S; Tovar N; Coelho PG; Thompson VP; Imazato S J Prosthodont Res; 2018 Jan; 62(1):24-30. PubMed ID: 28427837 [TBL] [Abstract][Full Text] [Related]
5. Effect of increased crown height on stress distribution in short dental implant components and their surrounding bone: A finite element analysis. Bulaqi HA; Mousavi Mashhadi M; Safari H; Samandari MM; Geramipanah F J Prosthet Dent; 2015 Jun; 113(6):548-57. PubMed ID: 25794917 [TBL] [Abstract][Full Text] [Related]
6. Measurement of the fatigue life of mini dental implants: a pilot study. Flanagan D; Ilies H; McCullough P; McQuoid S J Oral Implantol; 2008; 34(1):7-11. PubMed ID: 18390237 [TBL] [Abstract][Full Text] [Related]
7. Load limit of mini-implants with reduced abutment height based on fatigue fracture resistance: experimental and finite element study. Toyoshima Y; Wakabayashi N Int J Oral Maxillofac Implants; 2015; 30(1):e10-6. PubMed ID: 25506647 [TBL] [Abstract][Full Text] [Related]
8. Implant-bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis. Ding X; Zhu XH; Liao SH; Zhang XH; Chen H J Prosthodont; 2009 Jul; 18(5):393-402. PubMed ID: 19374710 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional finite element modelling of all-ceramic restorations based on micro-CT. Della Bona A; Borba M; Benetti P; Duan Y; Griggs JA J Dent; 2013 May; 41(5):412-9. PubMed ID: 23474359 [TBL] [Abstract][Full Text] [Related]
10. Finite element analysis to determine implant preload. Lang LA; Kang B; Wang RF; Lang BR J Prosthet Dent; 2003 Dec; 90(6):539-46. PubMed ID: 14668754 [TBL] [Abstract][Full Text] [Related]
11. Evaluating parameters of osseointegrated dental implants using finite element analysis--a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. Holmgren EP; Seckinger RJ; Kilgren LM; Mante F J Oral Implantol; 1998; 24(2):80-8. PubMed ID: 9835834 [TBL] [Abstract][Full Text] [Related]
12. Three-Dimensional Nonlinear Finite Element Analysis and Microcomputed Tomography Evaluation of Microgap Formation in a Dental Implant Under Oblique Loading. Jörn D; Kohorst P; Besdo S; Borchers L; Stiesch M Int J Oral Maxillofac Implants; 2016; 31(3):e32-42. PubMed ID: 27183080 [TBL] [Abstract][Full Text] [Related]
13. Validation of finite element models for strain analysis of implant-supported prostheses using digital image correlation. Tiossi R; Vasco MA; Lin L; Conrad HJ; Bezzon OL; Ribeiro RF; Fok AS Dent Mater; 2013 Jul; 29(7):788-96. PubMed ID: 23694844 [TBL] [Abstract][Full Text] [Related]
15. Fracture strength and probability of survival of narrow and extra-narrow dental implants after fatigue testing: In vitro and in silico analysis. Bordin D; Bergamo ETP; Fardin VP; Coelho PG; Bonfante EA J Mech Behav Biomed Mater; 2017 Jul; 71():244-249. PubMed ID: 28365541 [TBL] [Abstract][Full Text] [Related]
16. Influence of platform diameter in the reliability and failure mode of extra-short dental implants. Bordin D; Bergamo ETP; Bonfante EA; Fardin VP; Coelho PG J Mech Behav Biomed Mater; 2018 Jan; 77():470-474. PubMed ID: 29032313 [TBL] [Abstract][Full Text] [Related]
17. Wear at the titanium-titanium and the titanium-zirconia implant-abutment interface: a comparative in vitro study. Stimmelmayr M; Edelhoff D; Güth JF; Erdelt K; Happe A; Beuer F Dent Mater; 2012 Dec; 28(12):1215-20. PubMed ID: 23021964 [TBL] [Abstract][Full Text] [Related]
18. Mechanical strength and fracture point of a dental implant under certification conditions: A numerical approach by finite element analysis. de la Rosa Castolo G; Guevara Perez SV; Arnoux PJ; Badih L; Bonnet F; Behr M J Prosthet Dent; 2018 Apr; 119(4):611-619. PubMed ID: 28720340 [TBL] [Abstract][Full Text] [Related]
19. Platform switching: biomechanical evaluation using three-dimensional finite element analysis. Tabata LF; Rocha EP; Barão VA; Assunção WG Int J Oral Maxillofac Implants; 2011; 26(3):482-91. PubMed ID: 21691594 [TBL] [Abstract][Full Text] [Related]
20. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study. Marcián P; Borák L; Valášek J; Kaiser J; Florian Z; Wolff J J Biomech; 2014 Dec; 47(16):3830-6. PubMed ID: 25468296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]