BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 29921524)

  • 21. Femoral strength and strains in sideways fall: Validation of finite element models against bilateral strain measurements.
    Kok J; Grassi L; Gustafsson A; Isaksson H
    J Biomech; 2021 Jun; 122():110445. PubMed ID: 33933857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-related loss of proximal femoral strength in elderly men and women: the Age Gene/Environment Susceptibility Study--Reykjavik.
    Lang TF; Sigurdsson S; Karlsdottir G; Oskarsdottir D; Sigmarsdottir A; Chengshi J; Kornak J; Harris TB; Sigurdsson G; Jonsson BY; Siggeirsdottir K; Eiriksdottir G; Gudnason V; Keyak JH
    Bone; 2012 Mar; 50(3):743-8. PubMed ID: 22178403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of impact direction on the structural capacity of the proximal femur during falls.
    Ford CM; Keaveny TM; Hayes WC
    J Bone Miner Res; 1996 Mar; 11(3):377-83. PubMed ID: 8852948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of impact direction on the fracture load of osteoporotic proximal femurs.
    Wakao N; Harada A; Matsui Y; Takemura M; Shimokata H; Mizuno M; Ito M; Matsuyama Y; Ishiguro N
    Med Eng Phys; 2009 Nov; 31(9):1134-9. PubMed ID: 19665419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strain energy in the femoral neck during exercise.
    Martelli S; Kersh ME; Schache AG; Pandy MG
    J Biomech; 2014 Jun; 47(8):1784-91. PubMed ID: 24746018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Femoral neck cross-sectional geometry and exercise loading.
    Narra N; Nikander R; Viik J; Hyttinen J; Sievänen H
    Clin Physiol Funct Imaging; 2013 Jul; 33(4):258-66. PubMed ID: 23692614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of foramina on femoral neck fractures and strains predicted with finite element analysis.
    Kok J; Odin K; Rokkones S; Grassi L; Isaksson H
    J Mech Behav Biomed Mater; 2022 Oct; 134():105364. PubMed ID: 35917637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pelvis and femur geometry: Relationships with impact characteristics during sideways falls on the hip.
    Levine IC; Pretty SP; Nouri PK; Mourtzakis M; Laing AC
    J Biomech; 2018 Oct; 80():72-78. PubMed ID: 30201251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Specimen-specific modeling of hip fracture pattern and repair.
    Ali AA; Cristofolini L; Schileo E; Hu H; Taddei F; Kim RH; Rullkoetter PJ; Laz PJ
    J Biomech; 2014 Jan; 47(2):536-43. PubMed ID: 24275435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of boundary and loading conditions on patient classification using finite element predicted risk of fracture.
    Altai Z; Qasim M; Li X; Viceconti M
    Clin Biomech (Bristol, Avon); 2019 Aug; 68():137-143. PubMed ID: 31202100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of non-invasive assessments of strength of the proximal femur.
    Johannesdottir F; Thrall E; Muller J; Keaveny TM; Kopperdahl DL; Bouxsein ML
    Bone; 2017 Dec; 105():93-102. PubMed ID: 28739416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of loading rate on the of mechanical behavior of the femur in falling condition.
    Askarinejad S; Johnson JE; Rahbar N; Troy KL
    J Mech Behav Biomed Mater; 2019 Aug; 96():269-278. PubMed ID: 31075748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Vivo Assessment of Age- and Loading Configuration-Related Changes in Multiscale Mechanical Behavior of the Human Proximal Femur Using MRI-Based Finite Element Analysis.
    Zhang L; Wang L; Fu R; Wang J; Yang D; Liu Y; Zhang W; Liang W; Yang R; Yang H; Cheng X
    J Magn Reson Imaging; 2021 Mar; 53(3):905-912. PubMed ID: 33075178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?
    Schileo E; Balistreri L; Grassi L; Cristofolini L; Taddei F
    J Biomech; 2014 Nov; 47(14):3531-8. PubMed ID: 25261321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture.
    Lotz JC; Cheal EJ; Hayes WC
    Osteoporos Int; 1995; 5(4):252-61. PubMed ID: 7492864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. During sideways falls proximal femur fractures initiate in the superolateral cortex: evidence from high-speed video of simulated fractures.
    de Bakker PM; Manske SL; Ebacher V; Oxland TR; Cripton PA; Guy P
    J Biomech; 2009 Aug; 42(12):1917-25. PubMed ID: 19524929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cortical bone finite element models in the estimation of experimentally measured failure loads in the proximal femur.
    Koivumäki JE; Thevenot J; Pulkkinen P; Kuhn V; Link TM; Eckstein F; Jämsä T
    Bone; 2012 Oct; 51(4):737-40. PubMed ID: 22796418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur.
    Koivumäki JE; Thevenot J; Pulkkinen P; Kuhn V; Link TM; Eckstein F; Jämsä T
    Bone; 2012 Apr; 50(4):824-9. PubMed ID: 22306697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Explicit Finite Element Models Accurately Predict Subject-Specific and Velocity-Dependent Kinetics of Sideways Fall Impact.
    Fleps I; Guy P; Ferguson SJ; Cripton PA; Helgason B
    J Bone Miner Res; 2019 Oct; 34(10):1837-1850. PubMed ID: 31163090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of exercise load-associated differences in hip muscles by texture analysis.
    Nketiah G; Savio S; Dastidar P; Nikander R; Eskola H; Sievänen H
    Scand J Med Sci Sports; 2015 Jun; 25(3):428-34. PubMed ID: 24840507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.