BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 29921582)

  • 1. Rpp29 regulates histone H3.3 chromatin assembly through transcriptional mechanisms.
    Shastrula PK; Lund PJ; Garcia BA; Janicki SM
    J Biol Chem; 2018 Aug; 293(32):12360-12377. PubMed ID: 29921582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNase P protein subunit Rpp29 represses histone H3.3 nucleosome deposition.
    Newhart A; Powers SL; Shastrula PK; Sierra I; Joo LM; Hayden JE; Cohen AR; Janicki SM
    Mol Biol Cell; 2016 Apr; 27(7):1154-69. PubMed ID: 26842893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single cell analysis of RNA-mediated histone H3.3 recruitment to a cytomegalovirus promoter-regulated transcription site.
    Newhart A; Rafalska-Metcalf IU; Yang T; Joo LM; Powers SL; Kossenkov AV; Lopez-Jones M; Singer RH; Showe LC; Skordalakes E; Janicki SM
    J Biol Chem; 2013 Jul; 288(27):19882-99. PubMed ID: 23689370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H3.Y discriminates between HIRA and DAXX chaperone complexes and reveals unexpected insights into human DAXX-H3.3-H4 binding and deposition requirements.
    Zink LM; Delbarre E; Eberl HC; Keilhauer EC; Bönisch C; Pünzeler S; Bartkuhn M; Collas P; Mann M; Hake SB
    Nucleic Acids Res; 2017 Jun; 45(10):5691-5706. PubMed ID: 28334823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication.
    Jamai A; Imoberdorf RM; Strubin M
    Mol Cell; 2007 Feb; 25(3):345-55. PubMed ID: 17289583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin.
    Svensson JP; Shukla M; Menendez-Benito V; Norman-Axelsson U; Audergon P; Sinha I; Tanny JC; Allshire RC; Ekwall K
    Genome Res; 2015 Jun; 25(6):872-83. PubMed ID: 25778913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state.
    Loyola A; Bonaldi T; Roche D; Imhof A; Almouzni G
    Mol Cell; 2006 Oct; 24(2):309-16. PubMed ID: 17052464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marking histone H3 variants: how, when and why?
    Loyola A; Almouzni G
    Trends Biochem Sci; 2007 Sep; 32(9):425-33. PubMed ID: 17764953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of chromatin assembly/disassembly by Rtt109p, a histone H3 Lys56-specific acetyltransferase, in vivo.
    Durairaj G; Chaurasia P; Lahudkar S; Malik S; Shukla A; Bhaumik SR
    J Biol Chem; 2010 Oct; 285(40):30472-9. PubMed ID: 20668333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay between different epigenetic modifications and mechanisms.
    Murr R
    Adv Genet; 2010; 70():101-41. PubMed ID: 20920747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-omic profiling of histone variant H3.3 lysine 27 methylation reveals a distinct role from canonical H3 in stem cell differentiation.
    Kori Y; Lund PJ; Trovato M; Sidoli S; Yuan ZF; Noh KM; Garcia BA
    Mol Omics; 2022 May; 18(4):296-314. PubMed ID: 35044400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of histone H3 acetylation in the nucleosome core during mouse pre-implantation development.
    Ziegler-Birling C; Daujat S; Schneider R; Torres-Padilla ME
    Epigenetics; 2016 Aug; 11(8):553-62. PubMed ID: 26479850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin remodeling of histone H3 variants by DDM1 underlies epigenetic inheritance of DNA methylation.
    Lee SC; Adams DW; Ipsaro JJ; Cahn J; Lynn J; Kim HS; Berube B; Major V; Calarco JP; LeBlanc C; Bhattacharjee S; Ramu U; Grimanelli D; Jacob Y; Voigt P; Joshua-Tor L; Martienssen RA
    Cell; 2023 Sep; 186(19):4100-4116.e15. PubMed ID: 37643610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos.
    Akiyama T; Suzuki O; Matsuda J; Aoki F
    PLoS Genet; 2011 Oct; 7(10):e1002279. PubMed ID: 21998593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H3-K27M-mutant nucleosomes interact with MLL1 to shape the glioma epigenetic landscape.
    Furth N; Algranati D; Dassa B; Beresh O; Fedyuk V; Morris N; Kasper LH; Jones D; Monje M; Baker SJ; Shema E
    Cell Rep; 2022 May; 39(7):110836. PubMed ID: 35584667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3.
    Kraushaar DC; Jin W; Maunakea A; Abraham B; Ha M; Zhao K
    Genome Biol; 2013; 14(10):R121. PubMed ID: 24176123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone H3 N-terminal acetylation sites especially K14 are important for rDNA silencing and aging.
    Xu HH; Su T; Xue Y
    Sci Rep; 2016 Feb; 6():21900. PubMed ID: 26906758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modified epigenetics toolbox to study histone modifications on the nucleosome core.
    Frederiks F; Stulemeijer IJ; Ovaa H; van Leeuwen F
    Chembiochem; 2011 Jan; 12(2):308-13. PubMed ID: 21243718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immediate-early gene regulation by interplay between different post-translational modifications on human histone H3.
    Kaleem A; Hoessli DC; Ahmad I; Walker-Nasir E; Nasim A; Shakoori AR; Nasir-ud-Din
    J Cell Biochem; 2008 Feb; 103(3):835-51. PubMed ID: 17668447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All roads lead to chromatin: multiple pathways for histone deposition.
    Li Q; Burgess R; Zhang Z
    Biochim Biophys Acta; 2013; 1819(3-4):238-46. PubMed ID: 24459726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.