BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29921661)

  • 1. Polycystic kidney disease: a Hippo connection.
    Ma S; Guan KL
    Genes Dev; 2018 Jun; 32(11-12):737-739. PubMed ID: 29921661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A RhoA-YAP-c-Myc signaling axis promotes the development of polycystic kidney disease.
    Cai J; Song X; Wang W; Watnick T; Pei Y; Qian F; Pan D
    Genes Dev; 2018 Jun; 32(11-12):781-793. PubMed ID: 29891559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TAZ/Wnt-β-catenin/c-MYC axis regulates cystogenesis in polycystic kidney disease.
    Lee EJ; Seo E; Kim JW; Nam SA; Lee JY; Jun J; Oh S; Park M; Jho EH; Yoo KH; Park JH; Kim YK
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):29001-29012. PubMed ID: 33122431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilineal inheritance of pathogenic PKD1 and PKD2 variants in a Czech family with autosomal dominant polycystic kidney disease - a case report.
    Elisakova V; Merta M; Reiterova J; Baxova A; Kotlas J; Hirschfeldova K; Obeidova L; Tesar V; Stekrova J
    BMC Nephrol; 2018 Jul; 19(1):163. PubMed ID: 29973168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polycystin-1 regulates ARHGAP35-dependent centrosomal RhoA activation and ROCK signaling.
    Streets AJ; Prosseda PP; Ong AC
    JCI Insight; 2020 Aug; 5(16):. PubMed ID: 32663194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sperm morphological abnormalities in autosomal dominant polycystic kidney disease are associated with the Hippo signaling pathway via PC1.
    Shi WH; Zhou ZY; Ye MJ; Qin NX; Jiang ZR; Zhou XY; Xu NX; Cao XL; Chen SC; Huang HF; Xu CM
    Front Endocrinol (Lausanne); 2023; 14():1130536. PubMed ID: 37152951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-Autonomous Hedgehog Signaling Is Not Required for Cyst Formation in Autosomal Dominant Polycystic Kidney Disease.
    Ma M; Legué E; Tian X; Somlo S; Liem KF
    J Am Soc Nephrol; 2019 Nov; 30(11):2103-2111. PubMed ID: 31451534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD): Identification of five mutations in the PKD1 gene.
    Abdelwahed M; Hilbert P; Ahmed A; Mahfoudh H; Bouomrani S; Dey M; Hachicha J; Kamoun H; Keskes-Ammar L; Belguith N
    Gene; 2018 Sep; 671():28-35. PubMed ID: 29860066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel PKD1 and PKD2 mutations in autosomal dominant polycystic kidney disease (ADPKD).
    Hoefele J; Mayer K; Scholz M; Klein HG
    Nephrol Dial Transplant; 2011 Jul; 26(7):2181-8. PubMed ID: 21115670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptomics of shear stress treated Pkd1
    Kunnen SJ; Malas TB; Formica C; Leonhard WN; 't Hoen PAC; Peters DJM
    Biomed Pharmacother; 2018 Dec; 108():1123-1134. PubMed ID: 30372813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Mechanisms of ADPKD.
    Kim DY; Park JH
    Adv Exp Med Biol; 2016; 933():13-22. PubMed ID: 27730431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of sirolimus and mTOR kinase inhibitor in a hypomorphic
    Holditch SJ; Brown CN; Atwood DJ; Lombardi AM; Nguyen KN; Toll HW; Hopp K; Edelstein CL
    Am J Physiol Renal Physiol; 2019 Jul; 317(1):F187-F196. PubMed ID: 31042058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical and genetic characteristics of Korean autosomal dominant polycystic kidney disease patients.
    Oh YK; Park HC; Ryu H; Kim YC; Oh KH
    Korean J Intern Med; 2021 Jul; 36(4):767-779. PubMed ID: 34237823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing YAP expression in Pkd1 mutant mice does not improve the cystic phenotype.
    Formica C; Kunnen S; Dauwerse JG; Mullick AE; Dijkstra KL; Scharpfenecker M; Peters DJM;
    J Cell Mol Med; 2020 Aug; 24(15):8876-8882. PubMed ID: 32592332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered Hippo signalling in polycystic kidney disease.
    Happé H; van der Wal AM; Leonhard WN; Kunnen SJ; Breuning MH; de Heer E; Peters DJ
    J Pathol; 2011 May; 224(1):133-42. PubMed ID: 21381034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippo signaling-a central player in cystic kidney disease?
    Müller RU; Schermer B
    Pediatr Nephrol; 2020 Jul; 35(7):1143-1152. PubMed ID: 31297585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterotrimeric G protein signaling in polycystic kidney disease.
    Hama T; Park F
    Physiol Genomics; 2016 Jul; 48(7):429-45. PubMed ID: 27199453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epithelial Vasopressin Type-2 Receptors Regulate Myofibroblasts by a YAP-CCN2-Dependent Mechanism in Polycystic Kidney Disease.
    Dwivedi N; Tao S; Jamadar A; Sinha S; Howard C; Wallace DP; Fields TA; Leask A; Calvet JP; Rao R
    J Am Soc Nephrol; 2020 Aug; 31(8):1697-1710. PubMed ID: 32554753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational Screening of PKD1 and PKD2 Genes in Iranian Population Diagnosed with Autosomal Dominant Polycystic Kidney Disease.
    Ranjzad F; Tara A; Basiri A; Aghdami N; Moghadasali R
    Clin Lab; 2017 Jul; 63(7):1261-1267. PubMed ID: 28792715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current advances in molecular genetics of autosomal-dominant polycystic kidney disease.
    Wu G
    Curr Opin Nephrol Hypertens; 2001 Jan; 10(1):23-31. PubMed ID: 11195048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.