These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29921869)

  • 21. Divalent metal transporter 1 in the kidney proximal tubule is expressed in late endosomes/lysosomal membranes: implications for renal handling of protein-metal complexes.
    Abouhamed M; Gburek J; Liu W; Torchalski B; Wilhelm A; Wolff NA; Christensen EI; Thévenod F; Smith CP
    Am J Physiol Renal Physiol; 2006 Jun; 290(6):F1525-33. PubMed ID: 16449358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intestinal ferritin H is required for an accurate control of iron absorption.
    Vanoaica L; Darshan D; Richman L; Schümann K; Kühn LC
    Cell Metab; 2010 Sep; 12(3):273-82. PubMed ID: 20816093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sustained treatment of sickle cell mice with haptoglobin increases HO-1 and H-ferritin expression and decreases iron deposition in the kidney without improvement in kidney function.
    Shi PA; Choi E; Chintagari NR; Nguyen J; Guo X; Yazdanbakhsh K; Mohandas N; Alayash AI; Manci EA; Belcher JD; Vercellotti GM
    Br J Haematol; 2016 Nov; 175(4):714-723. PubMed ID: 27507623
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ZIP14 is involved in iron deposition and triggers ferroptosis in diabetic nephropathy.
    Wu K; Fei L; Wang X; Lei Y; Yu L; Xu W; Chen J; Zhu E; Zhong M; Huang M; Xi J; Yin F; Yan Z; Zhao X; Tang C; Patzak A; Liu X; Zheng Z
    Metallomics; 2022 Jul; 14(7):. PubMed ID: 35641158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GSK3β-mediated Keap1-independent regulation of Nrf2 antioxidant response: A molecular rheostat of acute kidney injury to chronic kidney disease transition.
    Lu M; Wang P; Qiao Y; Jiang C; Ge Y; Flickinger B; Malhotra DK; Dworkin LD; Liu Z; Gong R
    Redox Biol; 2019 Sep; 26():101275. PubMed ID: 31349118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Urinary Iron Excretion is Associated with Urinary Full-Length Megalin and Renal Oxidative Stress in Chronic Kidney Disease.
    Nakatani S; Nakatani A; Ishimura E; Toi N; Tsuda A; Mori K; Emoto M; Hirayama Y; Saito A; Inaba M
    Kidney Blood Press Res; 2018; 43(2):458-470. PubMed ID: 29590662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Whole-body iron transport and metabolism: Mechanistic, multi-scale model to improve treatment of anemia in chronic kidney disease.
    Sarkar J; Potdar AA; Saidel GM
    PLoS Comput Biol; 2018 Apr; 14(4):e1006060. PubMed ID: 29659573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iron metabolism in the pathogenesis of iron-induced kidney injury.
    Martines AM; Masereeuw R; Tjalsma H; Hoenderop JG; Wetzels JF; Swinkels DW
    Nat Rev Nephrol; 2013 Jul; 9(7):385-98. PubMed ID: 23670084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The plasma membrane metal-ion transporter ZIP14 contributes to nontransferrin-bound iron uptake by human β-cells.
    Coffey R; Knutson MD
    Am J Physiol Cell Physiol; 2017 Feb; 312(2):C169-C175. PubMed ID: 27903581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Renal function in patients with non-dialysis chronic kidney disease receiving intravenous ferric carboxymaltose: an analysis of the randomized FIND-CKD trial.
    Macdougall IC; Bock AH; Carrera F; Eckardt KU; Gaillard C; Van Wyck D; Meier Y; Larroque S; Roger SD;
    BMC Nephrol; 2017 Jan; 18(1):24. PubMed ID: 28095881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered dietary iron intake is a strong modulator of renal DMT1 expression.
    Wareing M; Ferguson CJ; Delannoy M; Cox AG; McMahon RF; Green R; Riccardi D; Smith CP
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1050-9. PubMed ID: 12876064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of Nrf2 alters cell stress induced by chronic iron exposure in human proximal tubular epithelial cells.
    van Raaij SEG; Masereeuw R; Swinkels DW; van Swelm RPL
    Toxicol Lett; 2018 Oct; 295():179-186. PubMed ID: 29959986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hyperhomocysteinemia Accelerates Acute Kidney Injury to Chronic Kidney Disease Progression by Downregulating Heme Oxygenase-1 Expression.
    Li S; Qiu B; Lu H; Lai Y; Liu J; Luo J; Zhu F; Hu Z; Zhou M; Tian J; Zhou Z; Yu S; Yi F; Nie J
    Antioxid Redox Signal; 2019 May; 30(13):1635-1650. PubMed ID: 30084650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prion protein functions as a ferrireductase partner for ZIP14 and DMT1.
    Tripathi AK; Haldar S; Qian J; Beserra A; Suda S; Singh A; Hopfer U; Chen SG; Garrick MD; Turner JR; Knutson MD; Singh N
    Free Radic Biol Med; 2015 Jul; 84():322-330. PubMed ID: 25862412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Both Nramp1 and DMT1 are necessary for efficient macrophage iron recycling.
    Soe-Lin S; Apte SS; Mikhael MR; Kayembe LK; Nie G; Ponka P
    Exp Hematol; 2010 Aug; 38(8):609-17. PubMed ID: 20394798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron Balance and the Role of Hepcidin in Chronic Kidney Disease.
    Ganz T; Nemeth E
    Semin Nephrol; 2016 Mar; 36(2):87-93. PubMed ID: 27236128
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential induction of renal heme oxygenase and ferritin in ascorbate and nonascorbate producing species transfused with modified cell-free hemoglobin.
    Butt OI; Buehler PW; D'Agnillo F
    Antioxid Redox Signal; 2010 Feb; 12(2):199-208. PubMed ID: 19659432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The uremic toxin indoxyl sulfate interferes with iron metabolism by regulating hepcidin in chronic kidney disease.
    Hamano H; Ikeda Y; Watanabe H; Horinouchi Y; Izawa-Ishizawa Y; Imanishi M; Zamami Y; Takechi K; Miyamoto L; Ishizawa K; Tsuchiya K; Tamaki T
    Nephrol Dial Transplant; 2018 Apr; 33(4):586-597. PubMed ID: 28992067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of alpha-lipoic acid on expression of iron transport and storage proteins in BV-2 microglia cells.
    Chen P; Li FM; Zhou YF; Qian C; Li J; Jiang LR; Qian ZM
    Pharmacol Rep; 2017 Feb; 69(1):1-5. PubMed ID: 27755990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron Metabolism in the Peripheral Nervous System: The Role of DMT1, Ferritin, and Transferrin Receptor in Schwann Cell Maturation and Myelination.
    Santiago González DA; Cheli VT; Wan R; Paez PM
    J Neurosci; 2019 Dec; 39(50):9940-9953. PubMed ID: 31676601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.