These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29921903)

  • 1. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli.
    Woolston BM; King JR; Reiter M; Van Hove B; Stephanopoulos G
    Nat Commun; 2018 Jun; 9(1):2387. PubMed ID: 29921903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methanol production by reversed methylotrophy constructed in
    Takeya T; Yamakita M; Hayashi D; Fujisawa K; Sakai Y; Yurimoto H
    Biosci Biotechnol Biochem; 2020 May; 84(5):1062-1068. PubMed ID: 31942827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.
    Whitaker WB; Jones JA; Bennett RK; Gonzalez JE; Vernacchio VR; Collins SM; Palmer MA; Schmidt S; Antoniewicz MR; Koffas MA; Papoutsakis ET
    Metab Eng; 2017 Jan; 39():49-59. PubMed ID: 27815193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Engineering of Escherichia coli for High Yield Production of Succinic Acid Driven by Methanol.
    Zhang W; Zhang T; Song M; Dai Z; Zhang S; Xin F; Dong W; Ma J; Jiang M
    ACS Synth Biol; 2018 Dec; 7(12):2803-2811. PubMed ID: 30300546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Komagataella phaffii for the efficient utilization of methanol.
    Wang Y; Li R; Zhao F; Wang S; Zhang Y; Fan D; Han S
    Microb Cell Fact; 2024 Jul; 23(1):198. PubMed ID: 39014373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Escherichia coli for methanol conversion.
    Müller JEN; Meyer F; Litsanov B; Kiefer P; Potthoff E; Heux S; Quax WJ; Wendisch VF; Brautaset T; Portais JC; Vorholt JA
    Metab Eng; 2015 Mar; 28():190-201. PubMed ID: 25596507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving synthetic methylotrophy via dynamic formaldehyde regulation of pentose phosphate pathway genes and redox perturbation.
    Rohlhill J; Gerald Har JR; Antoniewicz MR; Papoutsakis ET
    Metab Eng; 2020 Jan; 57():247-255. PubMed ID: 31881281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in E. coli.
    He H; Höper R; Dodenhöft M; Marlière P; Bar-Even A
    Metab Eng; 2020 Jul; 60():1-13. PubMed ID: 32169542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phage-Assisted Evolution of Bacillus methanolicus Methanol Dehydrogenase 2.
    Roth TB; Woolston BM; Stephanopoulos G; Liu DR
    ACS Synth Biol; 2019 Apr; 8(4):796-806. PubMed ID: 30856338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus.
    Jakobsen ØM; Benichou A; Flickinger MC; Valla S; Ellingsen TE; Brautaset T
    J Bacteriol; 2006 Apr; 188(8):3063-72. PubMed ID: 16585766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Aldolase-Catalyzed New Metabolic Pathway for the Assimilation of Formaldehyde and Methanol To Synthesize 2-Keto-4-hydroxybutyrate and 1,3-Propanediol in
    Wang C; Ren J; Zhou L; Li Z; Chen L; Zeng AP
    ACS Synth Biol; 2019 Nov; 8(11):2483-2493. PubMed ID: 31603652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Artificial Fusion Proteins for Enhanced Methanol Bioconversion.
    Fan L; Wang Y; Tuyishime P; Gao N; Li Q; Zheng P; Sun J; Ma Y
    Chembiochem; 2018 Dec; 19(23):2465-2471. PubMed ID: 30246938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering a synthetic energy-efficient formaldehyde assimilation cycle in Escherichia coli.
    Wu T; Gómez-Coronado PA; Kubis A; Lindner SN; Marlière P; Erb TJ; Bar-Even A; He H
    Nat Commun; 2023 Dec; 14(1):8490. PubMed ID: 38123535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribulose Monophosphate Shunt Provides Nearly All Biomass and Energy Required for Growth of E. coli.
    He H; Edlich-Muth C; Lindner SN; Bar-Even A
    ACS Synth Biol; 2018 Jun; 7(6):1601-1611. PubMed ID: 29756766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Converting Escherichia coli to a Synthetic Methylotroph Growing Solely on Methanol.
    Chen FY; Jung HW; Tsuei CY; Liao JC
    Cell; 2020 Aug; 182(4):933-946.e14. PubMed ID: 32780992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methanol-essential growth of Escherichia coli.
    Meyer F; Keller P; Hartl J; Gröninger OG; Kiefer P; Vorholt JA
    Nat Commun; 2018 Apr; 9(1):1508. PubMed ID: 29666370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of E. coli on formate and methanol via the reductive glycine pathway.
    Kim S; Lindner SN; Aslan S; Yishai O; Wenk S; Schann K; Bar-Even A
    Nat Chem Biol; 2020 May; 16(5):538-545. PubMed ID: 32042198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Corynebacterium glutamicum for methanol metabolism.
    Witthoff S; Schmitz K; Niedenführ S; Nöh K; Noack S; Bott M; Marienhagen J
    Appl Environ Microbiol; 2015 Mar; 81(6):2215-25. PubMed ID: 25595770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, construction and optimization of formaldehyde growth biosensors with broad application in biotechnology.
    Schann K; Bakker J; Boinot M; Kuschel P; He H; Nattermann M; Paczia N; Erb T; Bar-Even A; Wenk S
    Microb Biotechnol; 2024 Jul; 17(7):e14527. PubMed ID: 39031508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modified serine cycle in Escherichia coli coverts methanol and CO
    Yu H; Liao JC
    Nat Commun; 2018 Sep; 9(1):3992. PubMed ID: 30266898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.