These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 29921908)
1. Influence of growth media components on the antibacterial effect of silver ions on Bacillus subtilis in a liquid growth medium. De Leersnyder I; De Gelder L; Van Driessche I; Vermeir P Sci Rep; 2018 Jun; 8(1):9325. PubMed ID: 29921908 [TBL] [Abstract][Full Text] [Related]
2. Facile method for the synthesis of silver nanoparticles using 3-hydrazino-isatin derivatives in aqueous methanol and their antibacterial activity. El-Faham A; Elzatahry AA; Al-Othman ZA; Elsayed EA Int J Nanomedicine; 2014; 9():1167-74. PubMed ID: 24623975 [TBL] [Abstract][Full Text] [Related]
3. [Physicochemical Properties and Antibacterial Effect of Silver Nanoparticles: A Comparison of Environmental and Laboratorial Conditions]. Yi J; Cheng JP Huan Jing Ke Xue; 2017 Mar; 38(3):1173-1181. PubMed ID: 29965592 [TBL] [Abstract][Full Text] [Related]
4. TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application. Yuan Y; Ding J; Xu J; Deng J; Guo J J Nanosci Nanotechnol; 2010 Aug; 10(8):4868-74. PubMed ID: 21125821 [TBL] [Abstract][Full Text] [Related]
5. Antimicrobial properties of uncapped silver nanoparticles synthesized by DC arc thermal plasma technique. Shinde M; Patil R; Karmakar S; Bhoraskar S; Rane S; Gade W; Amalnerkar D J Nanosci Nanotechnol; 2012 Feb; 12(2):887-93. PubMed ID: 22629869 [TBL] [Abstract][Full Text] [Related]
6. Study of Bacillus subtilis response to different forms of silver. Rafińska K; Pomastowski P; Buszewski B Sci Total Environ; 2019 Apr; 661():120-129. PubMed ID: 30669044 [TBL] [Abstract][Full Text] [Related]
7. The poly-gamma-glutamate of Bacillus subtilis interacts specifically with silver nanoparticles. Eymard-Vernain E; Coute Y; Adrait A; Rabilloud T; Sarret G; Lelong C PLoS One; 2018; 13(5):e0197501. PubMed ID: 29813090 [TBL] [Abstract][Full Text] [Related]
8. Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity. Velmurugan P; Iydroose M; Mohideen MH; Mohan TS; Cho M; Oh BT Bioprocess Biosyst Eng; 2014 Aug; 37(8):1527-34. PubMed ID: 24569955 [TBL] [Abstract][Full Text] [Related]
9. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions. Hsueh YH; Lin KS; Ke WJ; Hsieh CT; Chiang CL; Tzou DY; Liu ST PLoS One; 2015; 10(12):e0144306. PubMed ID: 26669836 [TBL] [Abstract][Full Text] [Related]
10. Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite. Kanniah P; Chelliah P; Thangapandi JR; Gnanadhas G; Mahendran V; Robert M Int J Biol Macromol; 2021 Oct; 189():18-33. PubMed ID: 34389391 [TBL] [Abstract][Full Text] [Related]
11. Bacterial effects and protein corona evaluations: crucial ignored factors in the prediction of bio-efficacy of various forms of silver nanoparticles. Ashkarran AA; Ghavami M; Aghaverdi H; Stroeve P; Mahmoudi M Chem Res Toxicol; 2012 Jun; 25(6):1231-42. PubMed ID: 22551528 [TBL] [Abstract][Full Text] [Related]
12. Antibacterial activity of silver nanoparticles grafted on stone surface. Bellissima F; Bonini M; Giorgi R; Baglioni P; Barresi G; Mastromei G; Perito B Environ Sci Pollut Res Int; 2014 Dec; 21(23):13278-86. PubMed ID: 24151026 [TBL] [Abstract][Full Text] [Related]
13. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Escárcega-González CE; Garza-Cervantes JA; Vázquez-Rodríguez A; Montelongo-Peralta LZ; Treviño-González MT; Díaz Barriga Castro E; Saucedo-Salazar EM; Chávez Morales RM; Regalado Soto DI; Treviño González FM; Carrazco Rosales JL; Cruz RV; Morones-Ramírez JR Int J Nanomedicine; 2018; 13():2349-2363. PubMed ID: 29713166 [TBL] [Abstract][Full Text] [Related]
14. Thermo-responsive nanoarrays of silver nanoparticle, silicate nanoplatelet and PNiPAAm for the antimicrobial applications. Lin HC; Su YA; Liu TY; Sheng YJ; Lin JJ Colloids Surf B Biointerfaces; 2017 Apr; 152():459-466. PubMed ID: 28189097 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity. Ashokkumar S; Ravi S; Kathiravan V; Velmurugan S Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():34-9. PubMed ID: 24997264 [TBL] [Abstract][Full Text] [Related]
16. Levan-Capped Silver Nanoparticles for Bactericidal Formulations: Release and Activity Modelling. González-Garcinuño Á; Masa R; Hernández M; Domínguez Á; Tabernero A; Del Valle EM Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30917501 [TBL] [Abstract][Full Text] [Related]
17. Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROS-mediated pathways. Song Z; Wu Y; Wang H; Han H Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():255-263. PubMed ID: 30889699 [TBL] [Abstract][Full Text] [Related]
18. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Agnihotri S; Mukherji S; Mukherji S Nanoscale; 2013 Aug; 5(16):7328-40. PubMed ID: 23821237 [TBL] [Abstract][Full Text] [Related]
19. Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Kubo AL; Capjak I; Vrček IV; Bondarenko OM; Kurvet I; Vija H; Ivask A; Kasemets K; Kahru A Colloids Surf B Biointerfaces; 2018 Oct; 170():401-410. PubMed ID: 29945052 [TBL] [Abstract][Full Text] [Related]
20. Nanosilver and the microbiological activity of the particulate solids versus the leached soluble silver. Faiz MB; Amal R; Marquis CP; Harry EJ; Sotiriou GA; Rice SA; Gunawan C Nanotoxicology; 2018 Apr; 12(3):263-273. PubMed ID: 29447029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]