These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Muscle-inspired double-network hydrogels with robust mechanical property, biocompatibility and ionic conductivity. Geng L; Hu S; Cui M; Wu J; Huang A; Shi S; Peng X Carbohydr Polym; 2021 Jun; 262():117936. PubMed ID: 33838813 [TBL] [Abstract][Full Text] [Related]
10. Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration. Wang L; Li T; Wang Z; Hou J; Liu S; Yang Q; Yu L; Guo W; Wang Y; Guo B; Huang W; Wu Y Biomaterials; 2022 Jun; 285():121537. PubMed ID: 35500394 [TBL] [Abstract][Full Text] [Related]
11. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Wang L; Wu Y; Hu T; Ma PX; Guo B Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823 [TBL] [Abstract][Full Text] [Related]
12. [Functionalization of Cyclodextrin Derivatives to Create Supramolecular Pharmaceutical Materials]. Osaki M Yakugaku Zasshi; 2019; 139(2):165-173. PubMed ID: 30713225 [TBL] [Abstract][Full Text] [Related]
13. Nanofiber-structured hydrogel yarns with pH-response capacity and cardiomyocyte-drivability for bio-microactuator application. Wu S; Duan B; Qin X; Butcher JT Acta Biomater; 2017 Sep; 60():144-153. PubMed ID: 28733255 [TBL] [Abstract][Full Text] [Related]
14. 3D Printing of Supramolecular Polymer Hydrogels with Hierarchical Structure. Sather NA; Sai H; Sasselli IR; Sato K; Ji W; Synatschke CV; Zambrotta RT; Edelbrock JF; Kohlmeyer RR; Hardin JO; Berrigan JD; Durstock MF; Mirau P; Stupp SI Small; 2021 Feb; 17(5):e2005743. PubMed ID: 33448102 [TBL] [Abstract][Full Text] [Related]
15. Role of supramolecular polymers in photo-actuation of spiropyran hydrogels. Li C; Xiong Q; Clemons TD; Sai H; Yang Y; Hussain Sangji M; Iscen A; Palmer LC; Schatz GC; Stupp SI Chem Sci; 2023 Jun; 14(22):6095-6104. PubMed ID: 37293659 [TBL] [Abstract][Full Text] [Related]
16. Ultrastretchable, Antifreezing, and High-Performance Strain Sensor Based on a Muscle-Inspired Anisotropic Conductive Hydrogel for Human Motion Monitoring and Wireless Transmission. Chen L; Chang X; Chen J; Zhu Y ACS Appl Mater Interfaces; 2022 Sep; 14(38):43833-43843. PubMed ID: 36112731 [TBL] [Abstract][Full Text] [Related]
17. Enhancing the Biomechanical Performance of Anisotropic Nanofibrous Scaffolds in Tendon Tissue Engineering: Reinforcement with Cellulose Nanocrystals. Domingues RM; Chiera S; Gershovich P; Motta A; Reis RL; Gomes ME Adv Healthc Mater; 2016 Jun; 5(11):1364-75. PubMed ID: 27059281 [TBL] [Abstract][Full Text] [Related]
18. Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels. Wang T; Huang J; Yang Y; Zhang E; Sun W; Tong Z ACS Appl Mater Interfaces; 2015 Oct; 7(42):23423-30. PubMed ID: 26448049 [TBL] [Abstract][Full Text] [Related]
19. Anisotropic, strong, self-adhesive and strain-sensitive hydrogels enabled by magnetically-oriented cellulose/polydopamine nanocomposites. Yan G; He S; Chen G; Tang X; Sun Y; Xu F; Zeng X; Lin L Carbohydr Polym; 2022 Jan; 276():118783. PubMed ID: 34823795 [TBL] [Abstract][Full Text] [Related]
20. Ligament-Inspired Tough and Anisotropic Fibrous Gel Belt with Programed Shape Deformations Wei P; Chen T; Chen G; Hou K; Zhu M ACS Appl Mater Interfaces; 2021 Apr; 13(16):19291-19300. PubMed ID: 33852272 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]