These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1084 related articles for article (PubMed ID: 29922284)

  • 1. Targeting Autophagy in the Tumor Microenvironment: New Challenges and Opportunities for Regulating Tumor Immunity.
    Janji B; Berchem G; Chouaib S
    Front Immunol; 2018; 9():887. PubMed ID: 29922284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges.
    Noman MZ; Hasmim M; Lequeux A; Xiao M; Duhem C; Chouaib S; Berchem G; Janji B
    Cells; 2019 Sep; 8(9):. PubMed ID: 31540045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophagic Mechanism in Anti-Cancer Immunity: Its Pros and Cons for Cancer Therapy.
    Li YY; Feun LG; Thongkum A; Tu CH; Chen SM; Wangpaichitr M; Wu C; Kuo MT; Savaraj N
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer.
    Chouaib S; Noman MZ; Kosmatopoulos K; Curran MA
    Oncogene; 2017 Jan; 36(4):439-445. PubMed ID: 27345407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor-intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment.
    Yang L; Li A; Lei Q; Zhang Y
    J Hematol Oncol; 2019 Nov; 12(1):125. PubMed ID: 31775797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging role of autophagy in anti-tumor immunity: Implications for the modulation of immunotherapy resistance.
    Jiang T; Chen X; Ren X; Yang JM; Cheng Y
    Drug Resist Updat; 2021 May; 56():100752. PubMed ID: 33765484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy.
    Wang H; Franco F; Ho PC
    Trends Cancer; 2017 Aug; 3(8):583-592. PubMed ID: 28780935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-cancer Therapies Employing IL-2 Cytokine Tumor Targeting: Contribution of Innate, Adaptive and Immunosuppressive Cells in the Anti-tumor Efficacy.
    Mortara L; Balza E; Bruno A; Poggi A; Orecchia P; Carnemolla B
    Front Immunol; 2018; 9():2905. PubMed ID: 30619269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immuno-oncology-101: overview of major concepts and translational perspectives.
    Allard B; Aspeslagh S; Garaud S; Dupont FA; Solinas C; Kok M; Routy B; Sotiriou C; Stagg J; Buisseret L
    Semin Cancer Biol; 2018 Oct; 52(Pt 2):1-11. PubMed ID: 29428479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment.
    Zhang Y; Guoqiang L; Sun M; Lu X
    Cancer Biol Med; 2020 Feb; 17(1):32-43. PubMed ID: 32296575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting Autophagy in Cancer: Recent Advances and Future Directions.
    Amaravadi RK; Kimmelman AC; Debnath J
    Cancer Discov; 2019 Sep; 9(9):1167-1181. PubMed ID: 31434711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia: a key player in antitumor immune response. A Review in the Theme: Cellular Responses to Hypoxia.
    Noman MZ; Hasmim M; Messai Y; Terry S; Kieda C; Janji B; Chouaib S
    Am J Physiol Cell Physiol; 2015 Nov; 309(9):C569-79. PubMed ID: 26310815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tackling Resistance to Cancer Immunotherapy: What Do We Know?
    Gondhowiardjo SA; Handoko ; Jayalie VF; Apriantoni R; Barata AR; Senoaji F; Utami IJW; Maubere F; Nuryadi E; Giselvania A
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32911646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxia-induced autophagy: a new player in cancer immunotherapy?
    Noman MZ; Janji B; Berchem G; Mami-Chouaib F; Chouaib S
    Autophagy; 2012 Apr; 8(4):704-6. PubMed ID: 22441015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging role of metabolic reprogramming in tumor immune evasion and immunotherapy.
    Fan C; Zhang S; Gong Z; Li X; Xiang B; Deng H; Zhou M; Li G; Li Y; Xiong W; Zeng Z; Li X
    Sci China Life Sci; 2021 Apr; 64(4):534-547. PubMed ID: 32815067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunotherapy for triple-negative breast cancer: Existing challenges and exciting prospects.
    Jia H; Truica CI; Wang B; Wang Y; Ren X; Harvey HA; Song J; Yang JM
    Drug Resist Updat; 2017 May; 32():1-15. PubMed ID: 29145974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining epigenetic and immune therapy to overcome cancer resistance.
    Gomez S; Tabernacki T; Kobyra J; Roberts P; Chiappinelli KB
    Semin Cancer Biol; 2020 Oct; 65():99-113. PubMed ID: 31877341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heparanase: From basic research to therapeutic applications in cancer and inflammation.
    Vlodavsky I; Singh P; Boyango I; Gutter-Kapon L; Elkin M; Sanderson RD; Ilan N
    Drug Resist Updat; 2016 Nov; 29():54-75. PubMed ID: 27912844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression.
    Saleh R; Elkord E
    Semin Cancer Biol; 2020 Oct; 65():13-27. PubMed ID: 31362073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of heterogeneous regulatory T cells in the tumor microenvironment.
    Wei T; Zhong W; Li Q
    Pharmacol Res; 2020 Mar; 153():104659. PubMed ID: 31982490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.