These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29922325)

  • 1. Metabolomics of Early Stage Plant Cell-Microbe Interaction Using Stable Isotope Labeling.
    Pang Q; Zhang T; Wang Y; Kong W; Guan Q; Yan X; Chen S
    Front Plant Sci; 2018; 9():760. PubMed ID: 29922325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Metabolomics of Plant Hormones and Redox Metabolites in Stomatal Immunity.
    David L; Kang J; Chen S
    Methods Mol Biol; 2020; 2085():79-92. PubMed ID: 31734918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7.
    Thilmony R; Underwood W; He SY
    Plant J; 2006 Apr; 46(1):34-53. PubMed ID: 16553894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IDL6-HAE/HSL2 impacts pectin degradation and resistance to Pseudomonas syringae pv tomato DC3000 in Arabidopsis leaves.
    Wang X; Hou S; Wu Q; Lin M; Acharya BR; Wu D; Zhang W
    Plant J; 2017 Jan; 89(2):250-263. PubMed ID: 27618493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A prominent role for RCAR3-mediated ABA signaling in response to Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis.
    Lim CW; Luan S; Lee SC
    Plant Cell Physiol; 2014 Oct; 55(10):1691-703. PubMed ID: 25063782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of NtMPK2 uncovers its positive role in response to Pseudomonas syringae pv. tomato DC3000 in tobacco.
    Zhang X; Wang G; Gao J; Nie M; Liu W; Xia Q
    Plant Mol Biol; 2016 Jan; 90(1-2):19-31. PubMed ID: 26482478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual metabolomics: a novel approach to understanding plant-pathogen interactions.
    Allwood JW; Clarke A; Goodacre R; Mur LA
    Phytochemistry; 2010 Apr; 71(5-6):590-7. PubMed ID: 20138320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics and functional analyses of Arabidopsis nitrilases involved in the defense response to microbial pathogens.
    Choi du S; Lim CW; Hwang BK
    Planta; 2016 Aug; 244(2):449-65. PubMed ID: 27095107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonas syringae infection assays in Arabidopsis.
    Yao J; Withers J; He SY
    Methods Mol Biol; 2013; 1011():63-81. PubMed ID: 23615988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian regulation of plant immunity to pathogens.
    Ingle RA; Roden LC
    Methods Mol Biol; 2014; 1158():273-83. PubMed ID: 24792058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of tobacco to the Pseudomonas syringae pv. Tomato DC3000 is mainly dependent on salicylic acid signaling pathway.
    Liu Y; Wang L; Cai G; Jiang S; Sun L; Li D
    FEMS Microbiol Lett; 2013 Jul; 344(1):77-85. PubMed ID: 23581479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpressing the Myrosinase Gene
    Zhang K; Su H; Zhou J; Liang W; Liu D; Li J
    Front Plant Sci; 2019; 10():1230. PubMed ID: 31636648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants.
    Xin XF; He SY
    Annu Rev Phytopathol; 2013; 51():473-98. PubMed ID: 23725467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the Pseudomonas syringae pv. tomato AvrRpt2 protein: demonstration of secretion and processing during bacterial pathogenesis.
    Mudgett MB; Staskawicz BJ
    Mol Microbiol; 1999 Jun; 32(5):927-41. PubMed ID: 10361296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coronatine Facilitates Pseudomonas syringae Infection of Arabidopsis Leaves at Night.
    Panchal S; Roy D; Chitrakar R; Price L; Breitbach ZS; Armstrong DW; Melotto M
    Front Plant Sci; 2016; 7():880. PubMed ID: 27446113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LOV-domain photoreceptor, encoded in a genomic island, attenuates the virulence of Pseudomonas syringae in light-exposed Arabidopsis leaves.
    Moriconi V; Sellaro R; Ayub N; Soto G; Rugnone M; Shah R; Pathak GP; Gärtner W; Casal JJ
    Plant J; 2013 Oct; 76(2):322-31. PubMed ID: 23865633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quercetin-induced H(2)O(2) mediates the pathogen resistance against Pseudomonas syringae pv. Tomato DC3000 in Arabidopsis thaliana.
    Jia Z; Zou B; Wang X; Qiu J; Ma H; Gou Z; Song S; Dong H
    Biochem Biophys Res Commun; 2010 May; 396(2):522-7. PubMed ID: 20434432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Untargeted Metabolomics of Arabidopsis Stomatal Immunity.
    David L; Kang J; Chen S
    Methods Mol Biol; 2021; 2200():413-424. PubMed ID: 33175390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis AtERF15 positively regulates immunity against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea.
    Zhang H; Huang L; Dai Y; Liu S; Hong Y; Tian L; Huang L; Cao Z; Li D; Song F
    Front Plant Sci; 2015; 6():686. PubMed ID: 26388886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytohormones mediate volatile emissions during the interaction of compatible and incompatible pathogens: the role of ethylene in Pseudomonas syringae infected tobacco.
    Huang J; Schmelz EA; Alborn H; Engelberth J; Tumlinson JH
    J Chem Ecol; 2005 Mar; 31(3):439-59. PubMed ID: 15898494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.