These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

590 related articles for article (PubMed ID: 2992286)

  • 1. Is intestinal peptide transport energized by a proton gradient?
    Ganapathy ; Leibach FH
    Am J Physiol; 1985 Aug; 249(2 Pt 1):G153-60. PubMed ID: 2992286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide transport in intestinal and renal brush border membrane vesicles.
    Ganapathy V; Leibach FH
    Life Sci; 1982 Jun; 30(25):2137-46. PubMed ID: 7050578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driving force for peptide transport in mammalian intestine and kidney.
    Ganapathy V; Miyamoto Y; Leibach FH
    Beitr Infusionther Klin Ernahr; 1987; 17():54-68. PubMed ID: 3318802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thyrotropin-releasing hormone (TRH) uptake in intestinal brush-border membrane vesicles: comparison with proton-coupled dipeptide and Na(+)-coupled glucose transport.
    Thwaites DT; Simmons NL; Hirst BH
    Pharm Res; 1993 May; 10(5):667-73. PubMed ID: 8391693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton gradient-coupled uphill transport of glycylsarcosine in rabbit renal brush-border membrane vesicles.
    Miyamoto Y; Ganapathy V; Leibach FH
    Biochem Biophys Res Commun; 1985 Nov; 132(3):946-53. PubMed ID: 4074356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of glycyl-L-proline by mouse intestinal brush-border membrane vesicles.
    Rajendran VM; Berteloot A; Ramaswamy K
    Am J Physiol; 1985 Jun; 248(6 Pt 1):G682-6. PubMed ID: 4003548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of dipeptide transport in normal and papain-treated brush border membrane vesicles from mouse intestine. I. Uptake of glycyl-L-phenylalanine.
    Berteloot A; Khan AH; Ramaswamy K
    Biochim Biophys Acta; 1981 Dec; 649(2):179-88. PubMed ID: 7032591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The intestinal phase of peptide absorption].
    Friedrich M
    Nahrung; 1982; 26(10):887-901. PubMed ID: 6761592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carrier-mediated reabsorption of small peptides in renal proximal tubule.
    Ganapathy V; Leibach FH
    Am J Physiol; 1986 Dec; 251(6 Pt 2):F945-53. PubMed ID: 3538905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic and selective inhibition of basolateral membrane Na-K-ATPase uniquely regulates brush border membrane Na absorption in intestinal epithelial cells.
    Manoharan P; Gayam S; Arthur S; Palaniappan B; Singh S; Dick GM; Sundaram U
    Am J Physiol Cell Physiol; 2015 Apr; 308(8):C650-6. PubMed ID: 25652450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles.
    Ganapathy V; Burckhardt G; Leibach FH
    J Biol Chem; 1984 Jul; 259(14):8954-9. PubMed ID: 6746633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton/solute cotransport in rat kidney brush-border membrane vesicles: relative importance to both D-glucose and peptide transport.
    Vayro S; Simmons NL
    Biochim Biophys Acta; 1996 Feb; 1279(1):111-7. PubMed ID: 8624355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of glycyl-L-proline by human intestinal brush border membrane vesicles.
    Rajendran VM; Ansari SA; Harig JM; Adams MB; Khan AH; Ramaswamy K
    Gastroenterology; 1985 Dec; 89(6):1298-304. PubMed ID: 4054522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intestinal absorption of peptides.
    Matthews DM
    Physiol Rev; 1975 Oct; 55(4):537-608. PubMed ID: 1103167
    [No Abstract]   [Full Text] [Related]  

  • 15. Proton-coupled transport of organic solutes in animal cell membranes and its relation to Na+ transport.
    Hoshi T
    Jpn J Physiol; 1985; 35(2):179-91. PubMed ID: 2995712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A proton gradient, not a sodium gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles.
    Tiruppathi C; Balkovetz DF; Ganapathy V; Miyamoto Y; Leibach FH
    Biochem J; 1988 Nov; 256(1):219-23. PubMed ID: 2851979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H+ gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine.
    Tsuji A; Terasaki T; Tamai I; Hirooka H
    J Pharmacol Exp Ther; 1987 May; 241(2):594-601. PubMed ID: 3572815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hydrogen ion-gradient on carrier-mediated transport of glycylglycine across brush border membrane vesicles from rabbit small intestine.
    Takuwa N; Shimada T; Matsumoto H; Himukai M; Hoshi T
    Jpn J Physiol; 1985; 35(4):629-42. PubMed ID: 4068369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+-H+ exchanger of human placental brush-border membrane: identification and characterization.
    Balkovetz DF; Leibach FH; Mahesh VB; Devoe LD; Cragoe EJ; Ganapathy V
    Am J Physiol; 1986 Dec; 251(6 Pt 1):C852-60. PubMed ID: 3024497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H(+)-coupled uphill transport of the dipeptide glycylsarcosine by bovine intestinal brush-border membrane vesicles.
    Wolffram S; Grenacher B; Scharrer E
    J Dairy Sci; 1998 Oct; 81(10):2595-603. PubMed ID: 9812265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.