BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

593 related articles for article (PubMed ID: 2992286)

  • 1. Is intestinal peptide transport energized by a proton gradient?
    Ganapathy ; Leibach FH
    Am J Physiol; 1985 Aug; 249(2 Pt 1):G153-60. PubMed ID: 2992286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide transport in intestinal and renal brush border membrane vesicles.
    Ganapathy V; Leibach FH
    Life Sci; 1982 Jun; 30(25):2137-46. PubMed ID: 7050578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driving force for peptide transport in mammalian intestine and kidney.
    Ganapathy V; Miyamoto Y; Leibach FH
    Beitr Infusionther Klin Ernahr; 1987; 17():54-68. PubMed ID: 3318802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thyrotropin-releasing hormone (TRH) uptake in intestinal brush-border membrane vesicles: comparison with proton-coupled dipeptide and Na(+)-coupled glucose transport.
    Thwaites DT; Simmons NL; Hirst BH
    Pharm Res; 1993 May; 10(5):667-73. PubMed ID: 8391693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton gradient-coupled uphill transport of glycylsarcosine in rabbit renal brush-border membrane vesicles.
    Miyamoto Y; Ganapathy V; Leibach FH
    Biochem Biophys Res Commun; 1985 Nov; 132(3):946-53. PubMed ID: 4074356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of glycyl-L-proline by mouse intestinal brush-border membrane vesicles.
    Rajendran VM; Berteloot A; Ramaswamy K
    Am J Physiol; 1985 Jun; 248(6 Pt 1):G682-6. PubMed ID: 4003548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of dipeptide transport in normal and papain-treated brush border membrane vesicles from mouse intestine. I. Uptake of glycyl-L-phenylalanine.
    Berteloot A; Khan AH; Ramaswamy K
    Biochim Biophys Acta; 1981 Dec; 649(2):179-88. PubMed ID: 7032591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The intestinal phase of peptide absorption].
    Friedrich M
    Nahrung; 1982; 26(10):887-901. PubMed ID: 6761592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carrier-mediated reabsorption of small peptides in renal proximal tubule.
    Ganapathy V; Leibach FH
    Am J Physiol; 1986 Dec; 251(6 Pt 2):F945-53. PubMed ID: 3538905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic and selective inhibition of basolateral membrane Na-K-ATPase uniquely regulates brush border membrane Na absorption in intestinal epithelial cells.
    Manoharan P; Gayam S; Arthur S; Palaniappan B; Singh S; Dick GM; Sundaram U
    Am J Physiol Cell Physiol; 2015 Apr; 308(8):C650-6. PubMed ID: 25652450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles.
    Ganapathy V; Burckhardt G; Leibach FH
    J Biol Chem; 1984 Jul; 259(14):8954-9. PubMed ID: 6746633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton/solute cotransport in rat kidney brush-border membrane vesicles: relative importance to both D-glucose and peptide transport.
    Vayro S; Simmons NL
    Biochim Biophys Acta; 1996 Feb; 1279(1):111-7. PubMed ID: 8624355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of glycyl-L-proline by human intestinal brush border membrane vesicles.
    Rajendran VM; Ansari SA; Harig JM; Adams MB; Khan AH; Ramaswamy K
    Gastroenterology; 1985 Dec; 89(6):1298-304. PubMed ID: 4054522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intestinal absorption of peptides.
    Matthews DM
    Physiol Rev; 1975 Oct; 55(4):537-608. PubMed ID: 1103167
    [No Abstract]   [Full Text] [Related]  

  • 15. Proton-coupled transport of organic solutes in animal cell membranes and its relation to Na+ transport.
    Hoshi T
    Jpn J Physiol; 1985; 35(2):179-91. PubMed ID: 2995712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A proton gradient, not a sodium gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles.
    Tiruppathi C; Balkovetz DF; Ganapathy V; Miyamoto Y; Leibach FH
    Biochem J; 1988 Nov; 256(1):219-23. PubMed ID: 2851979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H+ gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine.
    Tsuji A; Terasaki T; Tamai I; Hirooka H
    J Pharmacol Exp Ther; 1987 May; 241(2):594-601. PubMed ID: 3572815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hydrogen ion-gradient on carrier-mediated transport of glycylglycine across brush border membrane vesicles from rabbit small intestine.
    Takuwa N; Shimada T; Matsumoto H; Himukai M; Hoshi T
    Jpn J Physiol; 1985; 35(4):629-42. PubMed ID: 4068369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+-H+ exchanger of human placental brush-border membrane: identification and characterization.
    Balkovetz DF; Leibach FH; Mahesh VB; Devoe LD; Cragoe EJ; Ganapathy V
    Am J Physiol; 1986 Dec; 251(6 Pt 1):C852-60. PubMed ID: 3024497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H(+)-coupled uphill transport of the dipeptide glycylsarcosine by bovine intestinal brush-border membrane vesicles.
    Wolffram S; Grenacher B; Scharrer E
    J Dairy Sci; 1998 Oct; 81(10):2595-603. PubMed ID: 9812265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.