These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 29923054)
1. Ultra-low carbon dioxide partial pressure improves the galactosylation of a monoclonal antibody produced in Chinese hamster ovary cells in a bioreactor. Wang C; Wang J; Chen M; Fan L; Zhao L; Tan WS Biotechnol Lett; 2018 Aug; 40(8):1201-1208. PubMed ID: 29923054 [TBL] [Abstract][Full Text] [Related]
2. Interaction of cell culture process parameters for modulating mAb afucosylation. Nguyen Dang A; Mun M; Rose CM; Ahyow P; Meier A; Sandoval W; Yuk IH Biotechnol Bioeng; 2019 Apr; 116(4):831-845. PubMed ID: 30597531 [TBL] [Abstract][Full Text] [Related]
3. CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation. Grainger RK; James DC Biotechnol Bioeng; 2013 Nov; 110(11):2970-83. PubMed ID: 23737295 [TBL] [Abstract][Full Text] [Related]
4. Impact of cell culture media additives on IgG glycosylation produced in Chinese hamster ovary cells. Ehret J; Zimmermann M; Eichhorn T; Zimmer A Biotechnol Bioeng; 2019 Apr; 116(4):816-830. PubMed ID: 30552760 [TBL] [Abstract][Full Text] [Related]
5. Media supplementation for targeted manipulation of monoclonal antibody galactosylation and fucosylation. Wells E; Song L; Greer M; Luo Y; Kurian V; Ogunnaike B; Robinson AS Biotechnol Bioeng; 2020 Nov; 117(11):3310-3321. PubMed ID: 32662879 [TBL] [Abstract][Full Text] [Related]
6. Effect of sodium butyrate on the assembly, charge variants, and galactosylation of antibody produced in recombinant Chinese hamster ovary cells. Hong JK; Lee SM; Kim KY; Lee GM Appl Microbiol Biotechnol; 2014 Jun; 98(12):5417-25. PubMed ID: 24557571 [TBL] [Abstract][Full Text] [Related]
7. Development of a scale-up strategy for Chinese hamster ovary cell culture processes using the k Doi T; Kajihara H; Chuman Y; Kuwae S; Kaminagayoshi T; Omasa T Biotechnol Prog; 2020 Sep; 36(5):e3000. PubMed ID: 32298540 [TBL] [Abstract][Full Text] [Related]
8. Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity. Park JH; Noh SM; Woo JR; Kim JW; Lee GM Biotechnol J; 2016 Mar; 11(4):487-96. PubMed ID: 26663903 [TBL] [Abstract][Full Text] [Related]
9. Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors. Tan JG; Lee YY; Wang T; Yap MG; Tan TW; Ng SK Biotechnol J; 2015 May; 10(5):790-800. PubMed ID: 25740626 [TBL] [Abstract][Full Text] [Related]
10. Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Gramer MJ; Eckblad JJ; Donahue R; Brown J; Shultz C; Vickerman K; Priem P; van den Bremer ET; Gerritsen J; van Berkel PH Biotechnol Bioeng; 2011 Jul; 108(7):1591-602. PubMed ID: 21328321 [TBL] [Abstract][Full Text] [Related]
11. Low CO Zhao L; Wang C; Wang J; Fan L; Chen M; Ye Q; Tan WS Biotechnol Lett; 2023 Sep; 45(9):1103-1115. PubMed ID: 37318718 [TBL] [Abstract][Full Text] [Related]
12. Glycoprofiling effects of media additives on IgG produced by CHO cells in fed-batch bioreactors. Kildegaard HF; Fan Y; Sen JW; Larsen B; Andersen MR Biotechnol Bioeng; 2016 Feb; 113(2):359-66. PubMed ID: 26222761 [TBL] [Abstract][Full Text] [Related]
13. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors. Karst DJ; Scibona E; Serra E; Bielser JM; Souquet J; Stettler M; Broly H; Soos M; Morbidelli M; Villiger TK Biotechnol Bioeng; 2017 Sep; 114(9):1978-1990. PubMed ID: 28409838 [TBL] [Abstract][Full Text] [Related]
14. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616 [TBL] [Abstract][Full Text] [Related]
15. Effect of iron addition on mAb productivity and oxidative stress in Chinese hamster ovary culture. Graham RJ; Mohammad A; Liang G; Fu Q; Kuang B; Polanco A; Lee YS; Marcus RK; Yoon S Biotechnol Prog; 2021 Sep; 37(5):e3181. PubMed ID: 34106525 [TBL] [Abstract][Full Text] [Related]
17. Dependence on glucose limitation of the pCO2 influences on CHO cell growth, metabolism and IgG production. Takuma S; Hirashima C; Piret JM Biotechnol Bioeng; 2007 Aug; 97(6):1479-88. PubMed ID: 17318909 [TBL] [Abstract][Full Text] [Related]
18. Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Figueroa B; Ailor E; Osborne D; Hardwick JM; Reff M; Betenbaugh MJ Biotechnol Bioeng; 2007 Jul; 97(4):877-92. PubMed ID: 17099908 [TBL] [Abstract][Full Text] [Related]
19. The availability of glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site occupancy and the N-glycosylation profile of a monoclonal antibody. Liu B; Spearman M; Doering J; Lattová E; Perreault H; Butler M J Biotechnol; 2014 Jan; 170():17-27. PubMed ID: 24286971 [TBL] [Abstract][Full Text] [Related]
20. 4-(2,5-Dimethyl-1H-pyrrol-1-yl)-N-(2,5-dioxopyrrolidin-1-yl) benzamide improves monoclonal antibody production in a Chinese hamster ovary cell culture. Aki Y; Katsumata Y; Kakihara H; Nonaka K; Fujiwara K PLoS One; 2021; 16(4):e0250416. PubMed ID: 33886677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]