These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29923078)

  • 1. Enhanced redox conductivity and enriched Geobacteraceae of exoelectrogenic biofilms in response to static magnetic field.
    Li C; Wang L; Liu H
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7611-7621. PubMed ID: 29923078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Millimeter scale electron conduction through exoelectrogenic mixed species biofilms.
    Li C; Lesnik KL; Fan Y; Liu H
    FEMS Microbiol Lett; 2016 Aug; 363(15):. PubMed ID: 27279626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox Conductivity of Current-Producing Mixed Species Biofilms.
    Li C; Lesnik KL; Fan Y; Liu H
    PLoS One; 2016; 11(5):e0155247. PubMed ID: 27159497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.
    Kitayama M; Koga R; Kasai T; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Community structure dynamics during startup in microbial fuel cells - The effect of phosphate concentrations.
    Yanuka-Golub K; Reshef L; Rishpon J; Gophna U
    Bioresour Technol; 2016 Jul; 212():151-159. PubMed ID: 27092994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells.
    Gao C; Wang A; Wu WM; Yin Y; Zhao YG
    Bioresour Technol; 2014 Sep; 167():124-32. PubMed ID: 24973773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single-chamber microbial fuel cells.
    Yuan Y; Zhou S; Xu N; Zhuang L
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):641-6. PubMed ID: 21050727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Anodic Community in Microbial Fuel Cells with Iron Oxide-Reducing Community.
    Yokoyama H; Ishida M; Yamashita T
    J Microbiol Biotechnol; 2016 Apr; 26(4):757-62. PubMed ID: 26767577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines.
    Qiao YJ; Qiao Y; Zou L; Wu XS; Liu JH
    Bioelectrochemistry; 2017 Oct; 117():34-39. PubMed ID: 28575838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community.
    Prokhorova A; Sturm-Richter K; Doetsch A; Gescher J
    Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28087529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.
    Yong YC; Yu YY; Zhang X; Song H
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4480-3. PubMed ID: 24644059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and performance of anodic mixed culture biofilms in submersed microbial fuel cells.
    Saba B; Christy AD; Yu Z; Co AC; Islam R; Tuovinen OH
    Bioelectrochemistry; 2017 Feb; 113():79-84. PubMed ID: 27816024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electricity generation from cattle manure slurry by cassette-electrode microbial fuel cells.
    Inoue K; Ito T; Kawano Y; Iguchi A; Miyahara M; Suzuki Y; Watanabe K
    J Biosci Bioeng; 2013 Nov; 116(5):610-5. PubMed ID: 23764017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of microbial fuel cells enriched using Cr(VI)-containing sludge.
    Ryu EY; Kim M; Lee SJ
    J Microbiol Biotechnol; 2011 Feb; 21(2):187-91. PubMed ID: 21364302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A framework for modeling electroactive microbial biofilms performing direct electron transfer.
    Korth B; Rosa LF; Harnisch F; Picioreanu C
    Bioelectrochemistry; 2015 Dec; 106(Pt A):194-206. PubMed ID: 25921352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials.
    Zhu X; Tokash JC; Hong Y; Logan BE
    Bioelectrochemistry; 2013 Apr; 90():30-5. PubMed ID: 23178374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anodic concentration loss and impedance characteristics in rotating disk electrode microbial fuel cells.
    Shen L; Ma J; Song P; Lu Z; Yin Y; Liu Y; Cai L; Zhang L
    Bioprocess Biosyst Eng; 2016 Oct; 39(10):1627-34. PubMed ID: 27282165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation.
    Jayasinghe N; Franks A; Nevin KP; Mahadevan R
    Biotechnol J; 2014 Oct; 9(10):1350-61. PubMed ID: 25113946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial community structure corresponds to performance during cathodic nitrate reduction.
    Wrighton KC; Virdis B; Clauwaert P; Read ST; Daly RA; Boon N; Piceno Y; Andersen GL; Coates JD; Rabaey K
    ISME J; 2010 Nov; 4(11):1443-55. PubMed ID: 20520654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.