These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 29923268)

  • 1. A machine-learned analysis of human gene polymorphisms modulating persisting pain points to major roles of neuroimmune processes.
    Kringel D; Lippmann C; Parnham MJ; Kalso E; Ultsch A; Lötsch J
    Eur J Pain; 2018 Nov; 22(10):1735-1756. PubMed ID: 29923268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated Computational Analysis of Genes Associated with Human Hereditary Insensitivity to Pain. A Drug Repurposing Perspective.
    Lötsch J; Lippmann C; Kringel D; Ultsch A
    Front Mol Neurosci; 2017; 10():252. PubMed ID: 28848388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine-learned computational functional genomics-based approach to drug classification.
    Lötsch J; Ultsch A
    Eur J Clin Pharmacol; 2016 Dec; 72(12):1449-1461. PubMed ID: 27695919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A data science approach to candidate gene selection of pain regarded as a process of learning and neural plasticity.
    Ultsch A; Kringel D; Kalso E; Mogil JS; Lötsch J
    Pain; 2016 Dec; 157(12):2747-2757. PubMed ID: 27548044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine-learned analysis of the association of next-generation sequencing-based human TRPV1 and TRPA1 genotypes with the sensitivity to heat stimuli and topically applied capsaicin.
    Kringel D; Geisslinger G; Resch E; Oertel BG; Thrun MC; Heinemann S; Lötsch J
    Pain; 2018 Jul; 159(7):1366-1381. PubMed ID: 29596157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A machine-learned knowledge discovery method for associating complex phenotypes with complex genotypes. Application to pain.
    Lötsch J; Ultsch A
    J Biomed Inform; 2013 Oct; 46(5):921-8. PubMed ID: 23896390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine-learned analysis of the association of next-generation sequencing-based genotypes with persistent pain after breast cancer surgery.
    Kringel D; Kaunisto MA; Kalso E; Lötsch J
    Pain; 2019 Oct; 160(10):2263-2277. PubMed ID: 31107411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine-learning-derived classifier predicts absence of persistent pain after breast cancer surgery with high accuracy.
    Lötsch J; Sipilä R; Tasmuth T; Kringel D; Estlander AM; Meretoja T; Kalso E; Ultsch A
    Breast Cancer Res Treat; 2018 Sep; 171(2):399-411. PubMed ID: 29876695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine-learned selection of psychological questionnaire items relevant to the development of persistent pain after breast cancer surgery.
    Lötsch J; Sipilä R; Dimova V; Kalso E
    Br J Anaesth; 2018 Nov; 121(5):1123-1132. PubMed ID: 30336857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an AmpliSeq
    Kringel D; Kaunisto MA; Lippmann C; Kalso E; Lötsch J
    Front Pharmacol; 2018; 9():1008. PubMed ID: 30283335
    [No Abstract]   [Full Text] [Related]  

  • 11. Machine-learned cluster identification in high-dimensional data.
    Ultsch A; Lötsch J
    J Biomed Inform; 2017 Feb; 66():95-104. PubMed ID: 28040499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Techniques in Exploring MicroRNA Gene Discovery, Targets, and Functions.
    Singh S; Benton RG; Singh A; Singh A
    Methods Mol Biol; 2017; 1617():211-224. PubMed ID: 28540688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating network, sequence and functional features using machine learning approaches towards identification of novel Alzheimer genes.
    Jamal S; Goyal S; Shanker A; Grover A
    BMC Genomics; 2016 Oct; 17(1):807. PubMed ID: 27756223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning approaches and their current application in plant molecular biology: A systematic review.
    Silva JCF; Teixeira RM; Silva FF; Brommonschenkel SH; Fontes EPB
    Plant Sci; 2019 Jul; 284():37-47. PubMed ID: 31084877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic learning of gene functional classes from DNA array expression data by using multilayer perceptrons.
    Mateos A; Dopazo J; Jansen R; Tu Y; Gerstein M; Stolovitzky G
    Genome Res; 2002 Nov; 12(11):1703-15. PubMed ID: 12421757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Informatics and machine learning to define the phenotype.
    Basile AO; Ritchie MD
    Expert Rev Mol Diagn; 2018 Mar; 18(3):219-226. PubMed ID: 29431517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Neuroimmune interactions in the skin: a link between pain and immunity].
    Debroas G; Hoeffel G; Reynders A; Ugolini S
    Med Sci (Paris); 2018 May; 34(5):432-438. PubMed ID: 29900846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics.
    Phan JH; Quo CF; Wang MD
    Prog Brain Res; 2006; 158():83-108. PubMed ID: 17027692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a new classification of stable phase schizophrenia into major and simple neuro-cognitive psychosis: Results of unsupervised machine learning analysis.
    Kanchanatawan B; Sriswasdi S; Thika S; Stoyanov D; Sirivichayakul S; Carvalho AF; Geffard M; Maes M
    J Eval Clin Pract; 2018 Aug; 24(4):879-891. PubMed ID: 29790237
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.