These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29923503)

  • 1. Addition of luminescence process in Monte Carlo simulation to precisely estimate the light emitted from water during proton and carbon-ion irradiation.
    Yabe T; Sasano M; Hirano Y; Toshito T; Akagi T; Yamashita T; Hayashi M; Azuma T; Sakamoto Y; Komori M; Yamamoto S
    Phys Med Biol; 2018 Jun; 63(12):125019. PubMed ID: 29923503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation and correction of produced light from prompt gamma photons on luminescence imaging of water for proton therapy dosimetry.
    Yabe T; Komori M; Toshito T; Yamaguchi M; Kawachi N; Yamamoto S
    Phys Med Biol; 2018 Feb; 63(4):04NT02. PubMed ID: 29350196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation and correction of Cerenkov-light on luminescence image of water for carbon-ion therapy dosimetry.
    Yabe T; Akagi T; Yamamoto S
    Phys Med; 2020 Jun; 74():118-124. PubMed ID: 32464469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the fractions of luminescence of water at higher energy than Cerenkov-light threshold for various types of radiation.
    Hirano Y; Yamamoto S
    J Biomed Opt; 2019 Jun; 24(6):1-9. PubMed ID: 31218874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of temporal response of luminescence of water at lower energy than Cerenkov-light threshold during carbon-ion irradiation.
    Yamamoto S; Akagi T; Hirano Y; Komori M
    Biomed Phys Eng Express; 2020 May; 6(4):045002. PubMed ID: 33444263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy.
    Yabe T; Yamamoto S; Oda M; Mori K; Toshito T; Akagi T
    Med Phys; 2020 Sep; 47(9):3882-3891. PubMed ID: 32623747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shielding implications for secondary neutrons and photons produced within the patient during IMPT.
    DeMarco J; Kupelian P; Santhanam A; Low D
    Med Phys; 2013 Jul; 40(7):071701. PubMed ID: 23822405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging of polarized components of Cerenkov light and luminescence of water during carbon-ion irradiation.
    Yamamoto S; Yabe T; Akagi T; Hirano Y
    Med Phys; 2021 Jan; 48(1):427-433. PubMed ID: 33219528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental depth dose curves of a 67.5 MeV proton beam for benchmarking and validation of Monte Carlo simulation.
    Faddegon BA; Shin J; Castenada CM; Ramos-Méndez J; Daftari IK
    Med Phys; 2015 Jul; 42(7):4199-210. PubMed ID: 26133619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The visible signal responsible for proton therapy dosimetry using bare optical fibers is not Čerenkov radiation.
    Darafsheh A; Taleei R; Kassaee A; Finlay JC
    Med Phys; 2016 Nov; 43(11):5973. PubMed ID: 27806617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: a simulation study.
    Biegun AK; Seravalli E; Lopes PC; Rinaldi I; Pinto M; Oxley DC; Dendooven P; Verhaegen F; Parodi K; Crespo P; Schaart DR
    Phys Med Biol; 2012 Oct; 57(20):6429-44. PubMed ID: 22996154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of polarization in the LUTDavis model for optical Monte Carlo simulation in radiation detectors.
    Trigila C; Roncali E
    Phys Med Biol; 2021 Oct; 66(21):. PubMed ID: 34624869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simulation study investigating a Cherenkov material for use with the prompt gamma range verification in proton therapy.
    Lau A; Ahmad S; Chen Y
    J Xray Sci Technol; 2016 May; 24(4):565-82. PubMed ID: 27163377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation.
    Schumann A; Petzoldt J; Dendooven P; Enghardt W; Golnik C; Hueso-González F; Kormoll T; Pausch G; Roemer K; Fiedler F
    Phys Med Biol; 2015 May; 60(10):4197-207. PubMed ID: 25955576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo modeling of the influence of strong magnetic fields on the stem-effect in plastic scintillation detectors used in radiotherapy dosimetry.
    Simiele E; Viscariello N; DeWerd L
    Med Phys; 2021 Mar; 48(3):1381-1394. PubMed ID: 33283279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prompt-gamma fall-off estimation with C-ion irradiation at clinical energies, using a knife-edge slit camera: A Monte Carlo study.
    Missaglia A; Bourkadi-Idrissi A; Casamichiela F; Mazzucconi D; Carminati M; Agosteo S; Fiorini C
    Phys Med; 2023 Mar; 107():102554. PubMed ID: 36907030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulations support non-Cerenkov radioluminescence production in tissue.
    Ackerman NL; Boschi F; Spinelli AE
    J Biomed Opt; 2017 Aug; 22(8):1-11. PubMed ID: 28819962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated model of scintillator-reflector properties for advanced simulations of optical transport.
    Roncali E; Stockhoff M; Cherry SR
    Phys Med Biol; 2017 Jun; 62(12):4811-4830. PubMed ID: 28398905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computed Cerenkov luminescence yields for radionuclides used in biology and medicine.
    Gill RK; Mitchell GS; Cherry SR
    Phys Med Biol; 2015 Jun; 60(11):4263-80. PubMed ID: 25973972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical imaging of produced light in water during irradiation of gamma photons lower energy than the Cerenkov-light threshold.
    Yamamoto S; Kato K; Abe S
    Appl Radiat Isot; 2020 Mar; 157():109037. PubMed ID: 32063330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.