These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 29923705)

  • 1. Self-Assembled Photonic Crystals of Monodisperse Dendritic Fibrous Nanosilica for Lasing: Role of Fiber Density.
    Maity A; Mujumdar S; Polshettiwar V
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23392-23398. PubMed ID: 29923705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dendritic Fibrous Nanosilica: Discovery, Synthesis, Formation Mechanism, Catalysis, and CO
    Polshettiwar V
    Acc Chem Res; 2022 May; 55(10):1395-1410. PubMed ID: 35499964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis to tune size, textural properties and fiber density of dendritic fibrous nanosilica for applications in catalysis and CO
    Maity A; Belgamwar R; Polshettiwar V
    Nat Protoc; 2019 Jul; 14(7):2177-2204. PubMed ID: 31189974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symmetric Continuously Tunable Photonic Band Gaps in Blue-Phase Liquid Crystals Switched by an Alternating Current Field.
    Du XW; Hou DS; Li X; Sun DP; Lan JF; Zhu JL; Ye WJ
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):22015-22020. PubMed ID: 31132240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-based self-assembled photonic crystals to tune light transport and emission.
    Priya ; Saini SK; Nair RV
    Chem Commun (Camb); 2022 Feb; 58(10):1481-1494. PubMed ID: 35018400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Application of Dendritic Fibrous Nanosilica/Gold Hybrid Nanomaterials.
    Byoun W; Jung S; Tran NM; Yoo H
    ChemistryOpen; 2018 May; 7(5):349-355. PubMed ID: 29872610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of photonic crystals with thermally adjustable pseudo-gaps.
    Li C; Xue Q; Ji Z; Li Y; Zhang H; Li D
    Soft Matter; 2020 Mar; 16(12):3063-3068. PubMed ID: 32133472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.
    Stimulak M; Ravnik M
    Soft Matter; 2014 Sep; 10(33):6339-46. PubMed ID: 25034860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable synthesis of dendritic fibrous nano silica using 1-pentanol-water microemulsion at low oil to water ratio.
    Liu X; Zhang X; Chen J; Zhang C; Feng S; Zhang W
    Nanotechnology; 2022 May; 33(32):. PubMed ID: 35487193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.
    Burkert K; Neumann T; Wang J; Jonas U; Knoll W; Ottleben H
    Langmuir; 2007 Mar; 23(6):3478-84. PubMed ID: 17269810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design principles for photonic crystals based on plasmonic nanoparticle superlattices.
    Sun L; Lin H; Kohlstedt KL; Schatz GC; Mirkin CA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7242-7247. PubMed ID: 29941604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendritic Fibrous Nanosilica (DFNS) for RNA Extraction from Cells.
    Maity A; Sandra US; Kolthur-Seetharam U; Polshettiwar V
    Langmuir; 2020 Oct; 36(42):12755-12759. PubMed ID: 33059454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled Chiral Photonic Crystals from a Colloidal Helix Racemate.
    Lei QL; Ni R; Ma YQ
    ACS Nano; 2018 Jul; 12(7):6860-6870. PubMed ID: 29889494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superlattice for photonic band gap opening in monolayers of dielectric spheres.
    Vynck K; Cassagne D; Centeno E
    Opt Express; 2006 Jul; 14(15):6668-74. PubMed ID: 19516847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable lasing behavior enabled by compound dielectric waveguide grating structures.
    Zhang Z; Li Y; Liu W; Yang J; Ma Y; Lu H; Sun Y; Jiang H; Chen H
    Opt Express; 2016 Aug; 24(17):19458-66. PubMed ID: 27557223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focusing concave lens using photonic crystals with magnetic materials.
    Yang SY; Hong CY; Yang HC
    J Opt Soc Am A Opt Image Sci Vis; 2006 Apr; 23(4):956-9. PubMed ID: 16604781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable liquid-crystal microshell-laser based on whispering-gallery modes and photonic band-gap mode lasing.
    Lu Y; Yang Y; Wang Y; Wang L; Ma J; Zhang L; Sun W; Liu Y
    Opt Express; 2018 Feb; 26(3):3277-3285. PubMed ID: 29401858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave-assisted self-organization of colloidal particles in confining aqueous droplets.
    Kim SH; Lee SY; Yi GR; Pine DJ; Yang SM
    J Am Chem Soc; 2006 Aug; 128(33):10897-904. PubMed ID: 16910685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-Demand Design of Tunable Complete Photonic Band Gaps based on Bloch Mode Analysis.
    Li S; Lin H; Meng F; Moss D; Huang X; Jia B
    Sci Rep; 2018 Sep; 8(1):14283. PubMed ID: 30250273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions.
    Hwang J; Song MH; Park B; Nishimura S; Toyooka T; Wu JW; Takanishi Y; Ishikawa K; Takezoe H
    Nat Mater; 2005 May; 4(5):383-7. PubMed ID: 15852019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.