These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 29923705)

  • 21. Unexpected Dependence of Photonic Band Gap Size on Randomness in Self-Assembled Colloidal Crystals.
    Wan D; Glotzer SC
    Phys Rev Lett; 2021 May; 126(20):208002. PubMed ID: 34110222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spherical colloidal photonic crystals.
    Zhao Y; Shang L; Cheng Y; Gu Z
    Acc Chem Res; 2014 Dec; 47(12):3632-42. PubMed ID: 25393430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color.
    Su X; Chang J; Wu S; Tang B; Zhang S
    Nanoscale; 2016 Mar; 8(11):6155-61. PubMed ID: 26931519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Titania Photonic Crystals with Precise Photonic Band Gap Position via Anodizing with Voltage versus Optical Path Length Modulation.
    Ermolaev GA; Kushnir SE; Sapoletova NA; Napolskii KS
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31018593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tunable photonic band gaps in two-dimensional photonic crystals by temporal modulation based on the Pockels effect.
    Takeda H; Yoshino K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016605. PubMed ID: 14995734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable refraction effects in two-dimensional photonic crystals utilizing liquid crystals.
    Takeda H; Yoshino K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056607. PubMed ID: 12786296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of dendritic fibrous nanosilica over a cubic core (cSiO
    Shabir J; Rani S; Sharma M; Garkoti C; Surabhi ; Mozumdar S
    RSC Adv; 2020 Feb; 10(14):8140-8151. PubMed ID: 35497821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembled tunable photonic hyper-crystals.
    Smolyaninova VN; Yost B; Lahneman D; Narimanov EE; Smolyaninov II
    Sci Rep; 2014 Jul; 4():5706. PubMed ID: 25027947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals.
    Passoni L; Criante L; Fumagalli F; Scotognella F; Lanzani G; Di Fonzo F
    ACS Nano; 2014 Dec; 8(12):12167-74. PubMed ID: 25415598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photonics and lasing in liquid crystal materials.
    Palffy-Muhoray P; Cao W; Moreira M; Taheri B; Munoz A
    Philos Trans A Math Phys Eng Sci; 2006 Oct; 364(1847):2747-61. PubMed ID: 16973487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unraveling the Formation Mechanism of Dendritic Fibrous Nanosilica.
    Maity A; Das A; Sen D; Mazumder S; Polshettiwar V
    Langmuir; 2017 Dec; 33(48):13774-13782. PubMed ID: 29111749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colloidal photonic crystal cladded optical fibers: Towards a new type of photonic band gap fiber.
    Li J; Heman P; Valdivia C; Kitaev V; Ozin G
    Opt Express; 2005 Aug; 13(17):6454-9. PubMed ID: 19498659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transition of lasing modes in disordered active photonic crystals.
    Kwan KC; Tao XM; Peng GD
    Opt Lett; 2007 Sep; 32(18):2720-2. PubMed ID: 17873947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Slow light engineering in resonant photonic crystal line-defect waveguides.
    Moghaddam MK; Fleury R
    Opt Express; 2019 Sep; 27(18):26229-26238. PubMed ID: 31510481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structuring β-Ga2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants.
    Li X; Zhen X; Meng S; Xian J; Shao Y; Fu X; Li D
    Environ Sci Technol; 2013 Sep; 47(17):9911-7. PubMed ID: 23906280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stealthy and hyperuniform isotropic photonic band gap structure in 3D.
    Siedentop L; Lui G; Maret G; Chaikin PM; Steinhardt PJ; Torquato S; Keim P; Florescu M
    PNAS Nexus; 2024 Sep; 3(9):pgae383. PubMed ID: 39328473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetic assembly route to colloidal responsive photonic nanostructures.
    He L; Wang M; Ge J; Yin Y
    Acc Chem Res; 2012 Sep; 45(9):1431-40. PubMed ID: 22578015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Origin of the Hierarchical Structure of Dendritic Fibrous Nanosilica: A Small-Angle X-ray Scattering Perspective.
    Bahadur J; Maity A; Sen D; Das A; Polshettiwar V
    Langmuir; 2021 Jun; 37(21):6423-6434. PubMed ID: 34008990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanowire-based tunable photonic crystals.
    Rehammar R; Kinaret JM
    Opt Express; 2008 Dec; 16(26):21682-91. PubMed ID: 19104600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.