BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 2992388)

  • 1. The effects of "oxygen radicals" generated in the medium on lenses in organ culture: inhibition of damage by chelated iron.
    Zigler JS; Jernigan HM; Garland D; Reddy VN
    Arch Biochem Biophys; 1985 Aug; 241(1):163-72. PubMed ID: 2992388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol oxidation by hydroxyl radicals: role of iron chelates, superoxide, and hydrogen peroxide.
    Feierman DE; Winston GW; Cederbaum AI
    Alcohol Clin Exp Res; 1985; 9(2):95-102. PubMed ID: 2988364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysosomal enzyme leakage during the hypoxanthine/xanthine oxidase reaction.
    Olsson GM; Svensson I; Zdolsek JM; Brunk UT
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1989; 56(6):385-91. PubMed ID: 2567086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid peroxide and reactive oxygen species generating systems of the crystalline lens.
    Babizhayev MA; Costa EB
    Biochim Biophys Acta; 1994 Feb; 1225(3):326-37. PubMed ID: 8312381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen peroxide-mediated corneal endothelial damage. Induction by oxygen free radical.
    Hull DS; Green K; Thomas L; Alderman N
    Invest Ophthalmol Vis Sci; 1984 Nov; 25(11):1246-53. PubMed ID: 6436189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of a xanthine oxidase/hypoxanthine free radical and reactive oxygen species generating system on endothelial function in New Zealand white rabbit aortic rings.
    Dowell FJ; Hamilton CA; McMurray J; Reid JL
    J Cardiovasc Pharmacol; 1993 Dec; 22(6):792-7. PubMed ID: 7509895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of porphyrins on iron-catalysed generation of hydroxyl radicals.
    Van Steveninck J; Boegheim JP; Dubbelman TM; Van der Zee J
    Biochem J; 1988 Feb; 250(1):197-201. PubMed ID: 2833235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protective role of intracellular superoxide dismutase against extracellular oxidants in cultured rat gastric cells.
    Hiraishi H; Terano A; Sugimoto T; Harada T; Razandi M; Ivey KJ
    J Clin Invest; 1994 Jan; 93(1):331-8. PubMed ID: 8282804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of hydrogen peroxide in riboflavin-sensitized photodynamic damage to cultured rat lenses.
    Jernigan HM
    Exp Eye Res; 1985 Jul; 41(1):121-9. PubMed ID: 4029283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xanthine oxidase-induced injury to endothelium: role of intracellular iron and hydroxyl radical.
    Kvietys PR; Inauen W; Bacon BR; Grisham MB
    Am J Physiol; 1989 Nov; 257(5 Pt 2):H1640-6. PubMed ID: 2556049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen free radical injury of IEC-18 small intestinal epithelial cell monolayers.
    Ma TY; Hollander D; Freeman D; Nguyen T; Krugliak P
    Gastroenterology; 1991 Jun; 100(6):1533-43. PubMed ID: 1850372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide anion reduces the ability of myeloperoxidase to damage lipids.
    Iwase H; Takatori T; Nagao M; Iwadate K; Takahashi M; Nakajima M; Takahashi T; Shimizu T
    Biochem Biophys Res Commun; 1996 Feb; 219(2):625-32. PubMed ID: 8605038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel cancer therapy based on oxygen radicals.
    Yoshikawa T; Kokura S; Tainaka K; Naito Y; Kondo M
    Cancer Res; 1995 Apr; 55(8):1617-20. PubMed ID: 7712462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of cellular superoxide dismutase against reactive oxygen metabolite-induced cell damage in cultured rat hepatocytes.
    Ito Y; Hiraishi H; Razandi M; Terano A; Harada T; Ivey KJ
    Hepatology; 1992 Jul; 16(1):247-54. PubMed ID: 1319953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative modification of lens crystallins by H2O2 and chelated iron.
    Zigler JS; Huang QL; Du XY
    Free Radic Biol Med; 1989; 7(5):499-505. PubMed ID: 2558979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arterial endothelial barrier dysfunction: actions of homocysteine and the hypoxanthine-xanthine oxidase free radical generating system.
    Berman RS; Martin W
    Br J Pharmacol; 1993 Apr; 108(4):920-6. PubMed ID: 8485631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for superoxide-dependent reduction of Fe3+ and its role in enzyme-generated hydroxyl radical formation.
    Fong KL; McCay PB; Poyer JL
    Chem Biol Interact; 1976 Sep; 15(1):77-89. PubMed ID: 183903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Singlet oxygen generation in the superoxide reaction.
    Mao Y; Zang L; Shi X
    Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of superoxide, hydrogen peroxide, and hydroxyl radical on intracellular calcium in human endothelial cells.
    Dreher D; Junod AF
    J Cell Physiol; 1995 Jan; 162(1):147-53. PubMed ID: 7814447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.