These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29923911)

  • 1. Enhancement of a genuine visual mismatch negativity correlates with the facilitation of perceptual alternation of a bistable image.
    Urakawa T; Nagano K; Matsumoto Y; Araki O
    Neuroreport; 2018 Sep; 29(13):1104-1108. PubMed ID: 29923911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exogenously-driven perceptual alternation of a bistable image: From the perspective of the visual change detection process.
    Urakawa T; Aragaki T; Araki O
    Neurosci Lett; 2017 Jul; 653():92-96. PubMed ID: 28552454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of the visual change detection process in facilitating perceptual alternation in the bistable image.
    Urakawa T; Bunya M; Araki O
    Cogn Neurodyn; 2017 Aug; 11(4):307-318. PubMed ID: 28761552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual mismatch negativity and stimulus-specific adaptation: the role of stimulus complexity.
    Kojouharova P; File D; Sulykos I; Czigler I
    Exp Brain Res; 2019 May; 237(5):1179-1194. PubMed ID: 30806740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of Visual Mismatch Negativity in Access Processing to Visual Awareness.
    Kurita Y; Urakawa T; Araki O
    Front Hum Neurosci; 2021; 15():757411. PubMed ID: 34803638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theta phase coherence in visual mismatch responses involved in access processing to visual awareness.
    Kurita Y; Urakawa T; Araki O
    Front Hum Neurosci; 2023; 17():1051844. PubMed ID: 36908709
    [No Abstract]   [Full Text] [Related]  

  • 7. Visual mismatch negativity is unaffected by top-down prediction of the timing of deviant events.
    Kimura M
    Exp Brain Res; 2018 May; 236(5):1283-1292. PubMed ID: 29487967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual mismatch negativity is sensitive to symmetry as a perceptual category.
    Kecskés-Kovács K; Sulykos I; Czigler I
    Eur J Neurosci; 2013 Feb; 37(4):662-7. PubMed ID: 23167956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does surprise enhancement or repetition suppression explain visual mismatch negativity?
    Amado C; Kovács G
    Eur J Neurosci; 2016 Jun; 43(12):1590-600. PubMed ID: 27108896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of hand motion and object orientation on the automatic detection of orientation: A visual mismatch negativity study.
    Petro B; Kojouharova P; Gaál ZA; Nagy B; Csizmadia P; Czigler I
    PLoS One; 2020; 15(2):e0229223. PubMed ID: 32101573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic change detection in vision: Adaptation, memory mismatch, or both? II: Oddball and adaptation effects on event-related potentials.
    Bodnár F; File D; Sulykos I; Kecskés-Kovács K; Czigler I
    Atten Percept Psychophys; 2017 Nov; 79(8):2396-2411. PubMed ID: 28853023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual mismatch negativity (vMMN) for low- and high-level deviances: A control study.
    File D; File B; Bodnár F; Sulykos I; Kecskés-Kovács K; Czigler I
    Atten Percept Psychophys; 2017 Oct; 79(7):2153-2170. PubMed ID: 28710556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Change Detection in Older and Younger Women: A Visual Mismatch Negativity Study.
    Sulykos I; Gaál ZA; Czigler I
    Gerontology; 2018; 64(4):318-325. PubMed ID: 29698946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual Mismatch Negativity Reflects Enhanced Response to the Deviant: Evidence From Event-Related Potentials and Electroencephalogram Time-Frequency Analysis.
    Zeng X; Ji L; Liu Y; Zhang Y; Fu S
    Front Hum Neurosci; 2022; 16():800855. PubMed ID: 35350445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic change detection during the performance of a continuous visual task.
    Tales A; Porter G; Butler S
    Neuroreport; 2009 Dec; 20(18):1638-42. PubMed ID: 19918204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action-induced adjustment of prediction explains no visual mismatch negativity to self-generated deviants.
    Kimura M; Takeda Y
    Neuropsychologia; 2019 Aug; 131():111-118. PubMed ID: 31121183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic detection of violations of statistical regularities in the periphery is affected by the focus of spatial attention: A visual mismatch negativity study.
    File D; Czigler I
    Eur J Neurosci; 2019 May; 49(10):1348-1356. PubMed ID: 30554438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric effect of automatic deviant detection: The effect of familiarity in visual mismatch negativity.
    Sulykos I; Kecskés-Kovács K; Czigler I
    Brain Res; 2015 Nov; 1626():108-17. PubMed ID: 25724142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual mismatch negativity (vMMN) is elicited with para-foveal hemifield oddball stimulation: An event-related brain potential (ERP) study.
    Berti S
    Neurosci Lett; 2018 Apr; 672():113-117. PubMed ID: 29474876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neural network model for exogenous perceptual alternations of the Necker cube.
    Araki O; Tsuruoka Y; Urakawa T
    Cogn Neurodyn; 2020 Apr; 14(2):229-237. PubMed ID: 32226564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.