These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 2992393)

  • 1. A cytosolic flavin-containing enzyme catalyzing reduction of cytochrome c in Trypanosoma cruzi: kinetic studies with cytochrome c as substrate.
    Kuwahara T; White RA; Agosin M
    Arch Biochem Biophys; 1985 Aug; 241(1):45-9. PubMed ID: 2992393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic mechanism for the model reaction of NADPH-cytochrome P450 oxidoreductase with cytochrome c.
    Sem DS; Kasper CB
    Biochemistry; 1994 Oct; 33(40):12012-21. PubMed ID: 7918420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cytosolic FAD-containing enzyme catalyzing cytochrome c reduction in Trypanosoma cruzi. I. Purification and some properties.
    Kuwahara T; White RA; Agosin M
    Arch Biochem Biophys; 1985 May; 239(1):18-28. PubMed ID: 3923933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic properties of guinea pig liver microsomal NADPH-cytochrome P-450 reductase.
    Kobayashi S; Rikans LE
    Comp Biochem Physiol B; 1984; 77(2):313-8. PubMed ID: 6321097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ionic strength on the kinetic mechanism and relative rate limitation of steps in the model NADPH-cytochrome P450 oxidoreductase reaction with cytochrome c.
    Sem DS; Kasper CB
    Biochemistry; 1995 Oct; 34(39):12768-74. PubMed ID: 7548031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase.
    Knight K; Scrutton NS
    Biochem J; 2002 Oct; 367(Pt 1):19-30. PubMed ID: 12079493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH-cytochrome c reductases of Trypanosoma cruzi.
    Kuwahara T; White RA; Agosin M
    Biochem Biophys Res Commun; 1984 Oct; 124(1):121-4. PubMed ID: 6437396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).
    Crankshaw DL; Hetnarski K; Wilkinson CF
    Biochem J; 1979 Sep; 181(3):593-605. PubMed ID: 117798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction of neuronal nitric-oxide synthase with 2,6-dichloroindolphenol and cytochrome c3+: influence of the electron acceptor and binding of Ca2+-activated calmodulin on the kinetic mechanism.
    Wolthers KR; Schimerlik MI
    Biochemistry; 2001 Apr; 40(15):4722-37. PubMed ID: 11294640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunochemical studies on the FAD-dependent NADPH-cytochrome c reductase from Trypanosoma cruzi.
    Kuwahara T; Paulin JJ; Cosgrove WB; Agosin M
    Arch Biochem Biophys; 1988 Jul; 264(1):214-21. PubMed ID: 3134855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatic substitution of the FAD-shielding tryptophan reveals its differential role in regulating electron flux in methionine synthase reductase and cytochrome P450 reductase.
    Meints CE; Simtchouk S; Wolthers KR
    FEBS J; 2013 Mar; 280(6):1460-74. PubMed ID: 23332101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on NADPH-cytochrome c reductase. II. Steady-state kinetic properties of the crystalline enzyme from ale yeast.
    Tryon E; Kuby SA
    Enzyme; 1984; 31(4):197-208. PubMed ID: 6432526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 31P-nuclear-magnetic-resonance study of NADPH-cytochrome-P-450 reductase and of the Azotobacter flavodoxin/ferredoxin-NADP+ reductase complex.
    Bonants PJ; Müller F; Vervoort J; Edmondson DE
    Eur J Biochem; 1990 Jul; 190(3):531-7. PubMed ID: 2115440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple NADPH-cytochrome P450 reductases from Trypanosoma cruzi suggested role on drug resistance.
    Portal P; Fernández Villamil S; Alonso GD; De Vas MG; Flawiá MM; Torres HN; Paveto C
    Mol Biochem Parasitol; 2008 Jul; 160(1):42-51. PubMed ID: 18455247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of a functional human NADH-dependent cytochrome P450 system.
    Döhr O; Paine MJ; Friedberg T; Roberts GC; Wolf CR
    Proc Natl Acad Sci U S A; 2001 Jan; 98(1):81-6. PubMed ID: 11136248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Location of functional -SH groups in NADPH-cytochrome P-450 reductase from rabbit liver microsomes.
    Nisimoto Y; Shibata Y
    Biochim Biophys Acta; 1981 Dec; 662(2):291-9. PubMed ID: 6797474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stopped-flow kinetic studies of flavin reduction in human cytochrome P450 reductase and its component domains.
    Gutierrez A; Lian LY; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2001 Feb; 40(7):1964-75. PubMed ID: 11329263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.