These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29924459)

  • 61. Functionally important residues in the predicted 3(rd) transmembrane domain of the type IIa sodium-phosphate co-transporter (NaPi-IIa).
    Virkki LV; Forster IC; Bacconi A; Biber J; Murer H
    J Membr Biol; 2005 Aug; 206(3):227-38. PubMed ID: 16456717
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Renal phosphate handling in human--what can we learn from hereditary hypophosphataemias?
    Amatschek S; Haller M; Oberbauer R
    Eur J Clin Invest; 2010 Jun; 40(6):552-60. PubMed ID: 20412291
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The sodium phosphate cotransporter family SLC34.
    Murer H; Forster I; Biber J
    Pflugers Arch; 2004 Feb; 447(5):763-7. PubMed ID: 12750889
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Topology of the type IIa Na+/P(i) cotransporter.
    Radanovic T; Gisler SM; Biber J; Murer H
    J Membr Biol; 2006; 212(1):41-9. PubMed ID: 17206517
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Clinical and biochemical phenotypes of adults with monoallelic and biallelic CYP24A1 mutations: evidence of gene dose effect.
    O'Keeffe DT; Tebben PJ; Kumar R; Singh RJ; Wu Y; Wermers RA
    Osteoporos Int; 2016 Oct; 27(10):3121-5. PubMed ID: 27129455
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genetic diseases of renal phosphate handling.
    Wagner CA; Rubio-Aliaga I; Biber J; Hernando N
    Nephrol Dial Transplant; 2014 Sep; 29 Suppl 4():iv45-54. PubMed ID: 25165185
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Renal hypophosphatemia:pathophysiology and treatment].
    Sekine T
    Clin Calcium; 2016 Feb; 26(2):284-94. PubMed ID: 26813509
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Phosphate transport: molecular basis, regulation and pathophysiology.
    Tenenhouse HS
    J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):572-7. PubMed ID: 17270430
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nephrolithiasis and Nephrocalcinosis in Children - Metabolic and Genetic Factors.
    Tasic V; Gucev Z
    Pediatr Endocrinol Rev; 2015 Sep; 13(1):468-76. PubMed ID: 26540764
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nephrolithiasis from an Unexpected Cause: Phosphaturia.
    Patel AB; Verma A; McMahon GM
    Am J Med; 2021 Feb; 134(2):e131-e132. PubMed ID: 32858021
    [No Abstract]   [Full Text] [Related]  

  • 71. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice.
    Myakala K; Motta S; Murer H; Wagner CA; Koesters R; Biber J; Hernando N
    Am J Physiol Renal Physiol; 2014 Apr; 306(8):F833-43. PubMed ID: 24553430
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Unchanged expression of the sodium-dependent phosphate cotransporter NaPi-IIa despite diurnal changes in renal phosphate excretion.
    Bielesz B; Bacic D; Honegger K; Biber J; Murer H; Wagner CA
    Pflugers Arch; 2006 Sep; 452(6):683-9. PubMed ID: 16710700
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fanconi-Bickel syndrome as an example of marked allelic heterogeneity.
    Al-Haggar M
    World J Nephrol; 2012 Jun; 1(3):63-8. PubMed ID: 24175243
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Genetic polymorphisms in CLDN14 (rs219780) and ALP (rs1256328) genes are associated with risk of nephrolithiasis in Egyptian children.
    Elshamaa MF; Fadel FI; Kamel S; Farouk H; Alahmady M; Ramadan Y
    Turk J Urol; 2021 Jan; 47(1):73-80. PubMed ID: 33052825
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rare Cause of Infantile Hypercalcemia: A Novel Mutation in the SLC34A1 Gene.
    Kurnaz E; Savaş Erdeve Ş; Çetinkaya S; Aycan Z
    Horm Res Paediatr; 2019; 91(4):278-284. PubMed ID: 30227399
    [TBL] [Abstract][Full Text] [Related]  

  • 76. CYP24A1 and SLC34A1 genetic defects associated with idiopathic infantile hypercalcemia: from genotype to phenotype.
    De Paolis E; Scaglione GL; De Bonis M; Minucci A; Capoluongo E
    Clin Chem Lab Med; 2019 Oct; 57(11):1650-1667. PubMed ID: 31188746
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Heterozygous mutation of
    Ma Y; Lv H; Wang J; Tan J
    J Int Med Res; 2020 Mar; 48(3):300060519896146. PubMed ID: 32216560
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mechanisms of phosphate transport.
    Levi M; Gratton E; Forster IC; Hernando N; Wagner CA; Biber J; Sorribas V; Murer H
    Nat Rev Nephrol; 2019 Aug; 15(8):482-500. PubMed ID: 31168066
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Infantile hypercalcemia with novel compound heterozygous mutation in SLC34A1 encoding renal sodium-phosphate cotransporter 2a: a case report.
    Kang SJ; Lee R; Kim HS
    Ann Pediatr Endocrinol Metab; 2019 Mar; 24(1):64-67. PubMed ID: 30943683
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Idiopathic infantile hypercalcemia: mutations in SLC34A1 and CYP24A1 in two siblings and fathers.
    Güven A; Konrad M; Schlingmann KP
    J Pediatr Endocrinol Metab; 2020 Aug; 33(10):1353-1358. PubMed ID: 32866123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.