BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 2992450)

  • 1. Production of the superoxide adduct of myeloperoxidase (compound III) by stimulated human neutrophils and its reactivity with hydrogen peroxide and chloride.
    Winterbourn CC; Garcia RC; Segal AW
    Biochem J; 1985 Jun; 228(3):583-92. PubMed ID: 2992450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide modulates the activity of myeloperoxidase and optimizes the production of hypochlorous acid.
    Kettle AJ; Winterbourn CC
    Biochem J; 1988 Jun; 252(2):529-36. PubMed ID: 2843172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of myeloperoxidase-dependent chlorination of monochlorodimedon.
    Kettle AJ; Winterbourn CC
    Biochim Biophys Acta; 1988 Nov; 957(2):185-91. PubMed ID: 2847800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of superoxide and myeloperoxidase in ascorbate oxidation in stimulated neutrophils and H2O2-treated HL60 cells.
    Parker A; Cuddihy SL; Son TG; Vissers MC; Winterbourn CC
    Free Radic Biol Med; 2011 Oct; 51(7):1399-405. PubMed ID: 21791243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of superoxide on myeloperoxidase kinetics measured with a hydrogen peroxide electrode.
    Kettle AJ; Winterbourn CC
    Biochem J; 1989 Nov; 263(3):823-8. PubMed ID: 2557013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the myeloperoxidase-H2O2-Cl- system of neutrophils by indomethacin and other non-steroidal anti-inflammatory drugs.
    Shacter E; Lopez RL; Pati S
    Biochem Pharmacol; 1991 Mar 15-Apr 1; 41(6-7):975-84. PubMed ID: 1848981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reactions of horseradish peroxidase, lactoperoxidase, and myeloperoxidase with enzymatically generated superoxide.
    Metodiewa D; Dunford HB
    Arch Biochem Biophys; 1989 Jul; 272(1):245-53. PubMed ID: 2544142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide is an antagonist of antiinflammatory drugs that inhibit hypochlorous acid production by myeloperoxidase.
    Kettle AJ; Gedye CA; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):2003-10. PubMed ID: 8390258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myeloperoxidase as an effective inhibitor of hydroxyl radical production. Implications for the oxidative reactions of neutrophils.
    Winterbourn CC
    J Clin Invest; 1986 Aug; 78(2):545-50. PubMed ID: 3016031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pulse radiolysis investigation of the reactions of myeloperoxidase with superoxide and hydrogen peroxide.
    Kettle AJ; Sangster DF; Gebicki JM; Winterbourn CC
    Biochim Biophys Acta; 1988 Aug; 956(1):58-62. PubMed ID: 2841980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myeloperoxidase-dependent loss of malondialdehyde: a limitation for detecting neutrophil-mediated lipid peroxidation.
    Winterbourn CC; Carr AC
    Arch Biochem Biophys; 1993 May; 302(2):461-7. PubMed ID: 8387748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative inactivation of pneumolysin by the myeloperoxidase system and stimulated human neutrophils.
    Clark RA
    J Immunol; 1986 Jun; 136(12):4617-22. PubMed ID: 3011897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion of extracellular hydrogen peroxide into intracellular compartments of human neutrophils. Studies utilizing the inactivation of myeloperoxidase by hydrogen peroxide and azide.
    Ohno Y; Gallin JI
    J Biol Chem; 1985 Jul; 260(14):8438-46. PubMed ID: 2989289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myeloperoxidase-dependent generation of a tyrosine peroxide by neutrophils.
    Winterbourn CC; Pichorner H; Kettle AJ
    Arch Biochem Biophys; 1997 Feb; 338(1):15-21. PubMed ID: 9015382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of peroxidase-catalyzed reactions by deferoxamine.
    Klebanoff SJ; Waltersdorph AM
    Arch Biochem Biophys; 1988 Aug; 264(2):600-6. PubMed ID: 2840860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Damage to Candida albicans hyphae and pseudohyphae by the myeloperoxidase system and oxidative products of neutrophil metabolism in vitro.
    Diamond RD; Clark RA; Haudenschild CC
    J Clin Invest; 1980 Nov; 66(5):908-17. PubMed ID: 6253527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing.
    Winterbourn CC; Hampton MB; Livesey JH; Kettle AJ
    J Biol Chem; 2006 Dec; 281(52):39860-9. PubMed ID: 17074761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of D-penicillamine on myeloperoxidase: formation of compound III and inhibition of the chlorinating activity.
    Cuperus RA; Hoogland H; Wever R; Muijsers AO
    Biochim Biophys Acta; 1987 Mar; 912(1):124-31. PubMed ID: 3030427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of ferrocytochrome C oxidation by hydrogen peroxide.
    Kownatzki E; Uhrich S; Bethke P
    Agents Actions; 1991 Nov; 34(3-4):393-6. PubMed ID: 1667246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of Clostridium difficile cytotoxin by the neutrophil myeloperoxidase system.
    Ooi W; Levine HG; LaMont JT; Clark RA
    J Infect Dis; 1984 Feb; 149(2):215-9. PubMed ID: 6321608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.