These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 29924714)

  • 1. Emergent coordination with a brain-machine interface: implications for the neural basis of motor learning.
    Mangalam M
    J Neurophysiol; 2018 Sep; 120(3):889-892. PubMed ID: 29924714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergent coordination underlying learning to reach to grasp with a brain-machine interface.
    Vaidya M; Balasubramanian K; Southerland J; Badreldin I; Eleryan A; Shattuck K; Gururangan S; Slutzky M; Osborne L; Fagg A; Oweiss K; Hatsopoulos NG
    J Neurophysiol; 2018 Apr; 119(4):1291-1304. PubMed ID: 29357477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergence of Coordinated Neural Dynamics Underlies Neuroprosthetic Learning and Skillful Control.
    Athalye VR; Ganguly K; Costa RM; Carmena JM
    Neuron; 2017 Feb; 93(4):955-970.e5. PubMed ID: 28190641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-machine interfaces for rehabilitation of poststroke hemiplegia.
    Ushiba J; Soekadar SR
    Prog Brain Res; 2016; 228():163-83. PubMed ID: 27590969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning to control a brain-machine interface for reaching and grasping by primates.
    Carmena JM; Lebedev MA; Crist RE; O'Doherty JE; Santucci DM; Dimitrov DF; Patil PG; Henriquez CS; Nicolelis MA
    PLoS Biol; 2003 Nov; 1(2):E42. PubMed ID: 14624244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low frequency repetitive transcranial magnetic stimulation to the non-lesioned hemisphere improves paretic arm reach-to-grasp performance after chronic stroke.
    Tretriluxana J; Kantak S; Tretriluxana S; Wu AD; Fisher BE
    Disabil Rehabil Assist Technol; 2013 Mar; 8(2):121-4. PubMed ID: 23244391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces.
    Xu K; Wang Y; Wang Y; Wang F; Hao Y; Zhang S; Zhang Q; Chen W; Zheng X
    J Neural Eng; 2013 Apr; 10(2):026008. PubMed ID: 23428877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-Null Neural State Space Dimensions.
    Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    Neuron; 2017 Jul; 95(1):195-208.e9. PubMed ID: 28625485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Representation of Finger Movement and Force in Human Motor and Premotor Cortices.
    Flint RD; Tate MC; Li K; Templer JW; Rosenow JM; Pandarinath C; Slutzky MW
    eNeuro; 2020; 7(4):. PubMed ID: 32769159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex.
    Hao Y; Zhang Q; Controzzi M; Cipriani C; Li Y; Li J; Zhang S; Wang Y; Chen W; Chiara Carrozza M; Zheng X
    J Neural Eng; 2014 Dec; 11(6):066011. PubMed ID: 25380169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Causal network in a deafferented non-human primate brain.
    Balasubramanian K; Takahashi K; Hatsopoulos NG
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():59-62. PubMed ID: 26736200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Plasticity in Sensorimotor Brain-Machine Interfaces.
    Dadarlat MC; Canfield RA; Orsborn AL
    Annu Rev Biomed Eng; 2023 Jun; 25():51-76. PubMed ID: 36854262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding de novo learning for brain-machine interfaces.
    Greenwell D; Vanderkolff S; Feigh J
    J Neurophysiol; 2023 Apr; 129(4):749-750. PubMed ID: 36883755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model.
    Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    J Neurosci; 2017 Feb; 37(7):1721-1732. PubMed ID: 28087767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Operant conditioning of a multiple degree-of-freedom brain-machine interface in a primate model of amputation.
    Balasubramanian K; Southerland J; Vaidya M; Qian K; Eleryan A; Fagg AH; Sluzky M; Oweiss K; Hatsopoulos N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():303-6. PubMed ID: 24109684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A four-dimensional virtual hand brain-machine interface using active dimension selection.
    Rouse AG
    J Neural Eng; 2016 Jun; 13(3):036021. PubMed ID: 27171896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recasting brain-machine interface design from a physical control system perspective.
    Zhang Y; Chase SM
    J Comput Neurosci; 2015 Oct; 39(2):107-18. PubMed ID: 26142906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local field potentials in primate motor cortex encode grasp kinetic parameters.
    Milekovic T; Truccolo W; GrĂ¼n S; Riehle A; Brochier T
    Neuroimage; 2015 Jul; 114():338-55. PubMed ID: 25869861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.